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ABSTRACT - In offshore oil and gas operations, process failures can lead to 

significant production losses, environmental risks, and safety hazards. 

Traditional diagnostic approaches often rely on manual analysis and post-

event investigations, which are time-consuming and reactive. This proposes a 

Root Cause Analytics (RCA) model designed to diagnose offshore process 

failures in real time using live operational data. The model integrates data 

streams from distributed sensors, control systems, and equipment logs to 

identify anomalies and trace fault propagation paths. By leveraging a hybrid 

approach that combines statistical analysis, rule-based inference, and 

machine learning algorithms, the RCA model isolates root causes with high 

accuracy and minimal latency. Key components include anomaly detection 

using time-series clustering, causal inference to map interdependencies 

between system variables, and a dynamic decision engine that updates fault 

hypotheses as new data arrive. A case study involving a floating production 

storage and offloading (FPSO) unit demonstrates the model’s effectiveness in 

diagnosing pressure surges and valve malfunctions, reducing mean time to 

diagnosis (MTTD) by over 40% compared to baseline methods. The model 

also provides visual fault trees and impact assessments to aid operator 

decision-making. Live validation on a digital twin platform confirmed its 

robustness under varying operational scenarios, including equipment 

degradation and sensor drift. This RCA model represents a shift from reactive 

to proactive offshore operations by enabling real-time diagnostics, thus 

improving asset reliability and operational safety. Future enhancements will 

focus on integrating maintenance history and human-in-the-loop feedback 

for adaptive learning. Overall, the proposed framework underscores the value 

of combining live data analytics with intelligent root cause reasoning to 

support timely, data-driven interventions in complex offshore environments. 

Keywords : Root Cause, Analytics Model, Diagnosing Offshore, Process 

Failures, Live Operational Data 
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1.  Introduction 

Offshore oil and gas operations are among the most technically complex and hazardous industrial activities. 

These processes involve the extraction, separation, transportation, and storage of hydrocarbons in 

environments that are not only physically remote but also dynamically unstable due to weather, subsea 

conditions, and continuous production demands (Awe, 2017; Oyedokun, 2019). Typical offshore facilities 

include platforms with intricate networks of equipment such as separators, compressors, pumps, and pipelines, 

all of which must operate in a synchronized and efficient manner. The stakes in offshore process operations are 

high—not only from a production and economic perspective but also in terms of environmental and human 

safety (Awe et al., 2017; ADEWOYIN et al., 2020). 

The complexity of offshore systems increases the likelihood of process disruptions and failures. These failures 

can originate from equipment malfunction, sensor errors, or human mistakes and can propagate rapidly, 

leading to production shutdowns, safety hazards, or environmental incidents such as oil spills (Akpan et al., 

2017; OGUNNOWO et al., 2020). Given the limited accessibility and harsh conditions offshore, diagnosing the 

root cause of such failures presents significant challenges. Rapid and accurate fault diagnosis is essential to 

mitigate risks, reduce downtime, and ensure continuous and safe operations (Omisola et al., 2020; 

ADEWOYIN et al., 2020). 

One of the most critical challenges in offshore oil and gas operations is the timely and accurate diagnosis of 

process failures. Traditional root cause analysis (RCA) techniques, such as manual inspection or static fault 

trees, are often inadequate in dynamic offshore environments (Solanke et al., 2014; Chudi et al., 2019). These 

methods typically rely on post-event data and human interpretation, which can delay corrective actions and 

lead to misdiagnosis. Additionally, the interdependence of various subsystems and the constant flow of real-

time operational data complicate the analysis further (Awe et al., 2017; Akpan et al., 2019). Without advanced 

analytical tools capable of processing and interpreting live data, operators are often left reacting to symptoms 

rather than addressing root causes proactively (Magnus et al., 2011; Chudi et al., 2019). 

The primary objective of this study is to develop a real-time, data-driven root cause analytics model tailored to 

the operational context of offshore oil and gas platforms. This model aims to utilize live data streams from 

sensors and control systems to automatically detect, diagnose, and predict failures. By integrating machine 

learning and statistical methods with domain knowledge, the model seeks to provide a proactive decision-

support tool that can enhance operational reliability and safety. Ultimately, the goal is to minimize downtime, 

optimize maintenance, and reduce the environmental and safety risks associated with process failures. 

2.0 Methodology 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was 

employed to ensure transparency and rigor in identifying and selecting relevant literature for this study. A 

systematic search was conducted across multiple academic databases, including IEEE Xplore, Scopus, Web of 

Science, and ScienceDirect, covering publications from 2000 to 2024 to ensure a comprehensive review of 

contemporary and foundational works. The search strategy was constructed using Boolean logic, combining 

key terms such as "root cause analysis", "offshore process failures", "live operational data", "real-time 

diagnostics", "fault detection", and "predictive maintenance". The inclusion criteria focused on peer-reviewed 

journal articles, conference proceedings, and review papers that discussed techniques, models, or frameworks 
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applicable to diagnosing or analyzing offshore operational anomalies using live or real-time data streams. 

Studies that were not in English, lacked empirical evaluation, or focused on unrelated domains (e.g., non-

industrial or inland settings) were excluded. 

Following the database search, all retrieved citations were imported into a reference manager, and duplicates 

were removed. Titles and abstracts were screened by two independent reviewers to identify articles that met 

the inclusion criteria. Full texts of potentially eligible studies were then reviewed for final inclusion. 

Discrepancies between reviewers during either stage were resolved through discussion and consensus, with a 

third reviewer available for adjudication if necessary. The final selection included studies that significantly 

contributed to the understanding of failure diagnostics in offshore environments, the role of streaming or real-

time data, and the implementation of data-driven root cause analysis techniques. Data extracted from the 

selected studies included methodology, data sources, diagnostic approaches, implementation challenges, and 

performance outcomes. This systematic review process underpins the development of the proposed analytics 

model by ensuring it is grounded in current, high-quality research and best practices in offshore diagnostics. 

2.1 Offshore Process Failure Landscape 

Offshore oil and gas platforms operate within a highly integrated system of mechanical, electrical, and control 

components. The reliability of these operations is vital, yet they are susceptible to a range of failure types that 

can compromise safety, efficiency, and environmental integrity. Among the most frequent failures are 

mechanical faults, particularly those involving rotating equipment such as pumps, compressors, and turbines 

(Ajiga, 2021; Odio et al., 2021).  

Instrumentation failures also pose a significant threat to offshore operations. These failures typically involve 

sensors, transmitters, and gauges that provide critical measurements such as pressure, temperature, and flow 

rates. Faulty readings from malfunctioning sensors can result in erroneous system responses, potentially 

triggering alarms or control actions that destabilize the process. Given the harsh environmental conditions 

offshore, including high humidity, vibration, and salinity, instrumentation degradation is a common issue 

(Adesemoye et al., 2021; ADEWOYIN et al., 2021). 

Control system anomalies represent another major category of failure. Programmable Logic Controllers (PLCs) 

and Distributed Control Systems (DCS) are responsible for maintaining process stability and safety. Software 

bugs, configuration errors, and communication breakdowns within these systems can introduce delays or 

erroneous control actions. In some cases, control loops may become unstable or unresponsive, leading to 

cascading effects across interconnected subsystems. 

Human error remains a persistent and often underestimated contributor to offshore process failures. Mistakes 

in equipment configuration, delayed responses to alarms, or misinterpretation of control room data can 

escalate minor issues into major incidents. While automation reduces human involvement in some tasks, the 

complexity of offshore operations still necessitates significant human decision-making, especially during 

abnormal conditions or emergencies (OGUNNOWO et al., 2021; Ogunnowo et al., 2021). 

 

The consequences of process failures in offshore environments are substantial and multifaceted. Foremost 

among these are safety risks. Equipment malfunctions or control failures can lead to fires, explosions, or toxic 
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releases, endangering the lives of personnel onboard. For example, the failure of a pressure relief system might 

result in overpressurization and catastrophic rupture of vessels or pipelines. 

Environmental incidents are another serious consequence. Offshore spills, gas leaks, and chemical discharges 

can cause extensive damage to marine ecosystems and incur significant remediation costs. The Deepwater 

Horizon disaster in 2010 is a stark reminder of how process failures, compounded by diagnostic and response 

shortcomings, can lead to environmental catastrophes (ADEWOYIN et al., 2021; Onyeke et al., 2022). 

Production downtime is a frequent outcome of failures, resulting in substantial economic losses. Shutdowns, 

whether planned for maintenance or unplanned due to faults, interrupt the supply chain and reduce asset 

productivity. In competitive energy markets, even short delays in production can have wide-reaching financial 

implications. Furthermore, frequent downtime can accelerate wear and tear on equipment due to repeated 

start-up and shutdown cycles, creating a vicious cycle of failure. 

  

Current diagnostic approaches in offshore oil and gas operations range from manual methods to semi-

automated expert systems. Manual troubleshooting, traditionally the first line of response, involves operators 

and engineers inspecting equipment, interpreting alarms, and consulting operational logs (Okolo et al., 2021; 

Ojika et al., 2021). While this method leverages operator experience, it is time-consuming, prone to oversight, 

and limited by human cognitive capacity—particularly under time pressure or in complex failure scenarios. 

Rule-based diagnostic systems provide a more structured approach. These systems rely on predefined logic, 

such as "if-then" rules, to infer fault conditions based on sensor readings or system behaviors. Although useful 

in identifying well-known failure modes, rule-based systems struggle with novel or evolving faults. Their 

performance is heavily dependent on the completeness and accuracy of the rules, which may not fully capture 

dynamic operational conditions. 

Expert-driven fault trees offer a visual and logical representation of cause-effect relationships leading to system 

failures. These trees are constructed based on expert knowledge and historical data, depicting how basic events 

propagate to undesirable outcomes (Daraojimba et al., 2021; Orieno et al., 2021). While effective for post-

incident analysis and risk assessment, fault trees are inherently static. They cannot easily accommodate real-

time data inputs or adapt to changing process conditions, limiting their utility for real-time diagnostics. 

While existing diagnostic methods provide some level of fault detection and analysis, they are inadequate for 

the increasingly dynamic and data-rich environment of offshore operations. A transition toward more adaptive, 

data-driven diagnostic tools is essential to enhance reliability, safety, and environmental stewardship in 

offshore oil and gas production. 

 

2.2 Live Operational Data Sources 

Offshore oil and gas platforms are equipped with a multitude of sensors and systems designed to continuously 

monitor and control critical processes. These components generate a wealth of live operational data that is 

invaluable for fault detection and diagnostics. The most prevalent types of data originate from field 

instrumentation, control systems, and maintenance records. Sensor data constitutes the largest portion of 

operational information as shown in figure 1. Pressure, flow rate, temperature, and level measurements are 



Volume 5, Issue 4, July-August 2022 | www.shisrrj.com 

Andrew Tochukwu Ofoedu et al Sh Int S Ref Res J, July-August 2022, 5 (4) : 226-244 

 

 

 

 

 

 

230 

captured in real-time from various parts of the production process (Onaghinor et al., 2021; Mustapha et al., 

2021). These measurements are essential for both operational control and diagnostic modeling. 

Control system logs provide another critical data source. Distributed Control Systems (DCS) and 

Programmable Logic Controllers (PLC) continuously record system status, setpoints, controller outputs, and 

mode transitions. These logs help trace the sequence of events during a process disturbance, offering context 

for identifying causal relationships between equipment behavior and process anomalies. 

Alarms and event records are also crucial. Alarm management systems generate alerts when process variables 

deviate from safe limits or when equipment malfunctions. These alerts, timestamped and prioritized, offer 

real-time indicators of abnormal conditions. In complex fault scenarios, the sequence and clustering of alarms 

can help isolate potential root causes. 

 
Figure 1 : Live Operational Data Sources 

Additionally, maintenance history—including inspection reports, failure logs, and repair records—provides 

valuable background information. This historical data enables the identification of recurring issues, equipment 

degradation patterns, and the effectiveness of previous corrective actions (Adewoyin, 2021; Dienagha et al., 

2022). Integrating maintenance data with live sensor readings enriches the diagnostic model with both real-

time and contextual insights. 

 

Live operational data from offshore facilities is characterized by several challenging properties that complicate 

direct use for analytics. First, the volume of data is immense. Hundreds or even thousands of sensors transmit 

data at high frequencies, often in the range of 1–10 Hz, resulting in terabytes of information over relatively 

short periods. This volume necessitates scalable data storage and processing architectures. 

Second, the velocity of data—how fast it is generated and must be processed—poses real-time computing 

challenges. Effective diagnostics require not only the ability to ingest data at high speed but also to analyze it 

promptly to enable timely interventions. 
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Third, operational data is inherently noisy. Sensor readings can fluctuate due to environmental interference, 

equipment vibrations, or measurement inaccuracies. Noise obscures underlying patterns and may lead to false 

alarms or incorrect inferences if not properly managed. 

Another common issue is missing data. Sensor dropouts, communication lags, or maintenance activities often 

lead to incomplete datasets. Missing values compromise the integrity of statistical and machine learning 

models and must be addressed through robust preprocessing techniques (Chudi et al., 2021; Awe, 2021). 

 

To ensure the reliability and effectiveness of analytics, live operational data must undergo comprehensive 

preprocessing. One fundamental step is normalization. This involves scaling data to a common range or 

standard format, which is especially important when combining measurements from different types of sensors 

with varying units and magnitudes. 

Filtering techniques are employed to reduce noise. Common methods include moving average filters, Kalman 

filters, and more advanced signal processing techniques like wavelet transforms. These methods help isolate 

the true signal from random fluctuations, improving the quality of downstream analysis. 

Imputation techniques are essential for handling missing values. Simple approaches include forward filling or 

mean substitution, while more sophisticated methods use regression models or machine learning algorithms to 

estimate missing entries based on observed patterns in the data (Okolo et al., 2022; Nwulu et al., 2022). 

Effective imputation preserves the continuity and accuracy of the time series. 

Time alignment is another critical preprocessing step. Data streams from various sensors and systems may 

arrive at different sampling rates or with time lags. Synchronizing data to a unified time base ensures temporal 

coherence, which is vital for accurately identifying cause-effect relationships and training time-sensitive 

diagnostic models. 

Live operational data from offshore platforms provides a rich foundation for real-time root cause analysis. 

However, its complexity and imperfections require thoughtful preprocessing to unlock its full potential. When 

properly handled, this data becomes a powerful asset for enhancing the safety, reliability, and efficiency of 

offshore oil and gas operations. 

 

2.3 Root Cause Analytics Model Architecture 

Root cause analysis (RCA) is a crucial technique in various domains including industrial operations, 

information technology systems, and healthcare, aimed at identifying the fundamental causes of anomalies or 

failures. An advanced Root Cause Analytics Model is often structured into a comprehensive architecture that 

integrates multiple layers of data processing, modeling, and interpretation to deliver actionable insights as 

shown in figure 2(Ogunwole et al., 2022; Esan et al., 2022). This explores the architecture of a root cause 

analytics model through four primary components: model components, model selection, feature extraction and 

selection, and causal inference and reasoning. 

A robust root cause analytics system typically consists of four main components: the data ingestion layer, 

preprocessing engine, diagnostic model core, and visualization interface. 

The data ingestion layer is responsible for collecting and consolidating data from diverse sources such as 

sensors, logs, databases, and external APIs. This layer must support real-time streaming as well as batch 
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processing, depending on the system’s requirements. The preprocessing engine standardizes and cleans the 

data, addressing missing values, time alignment, and noise filtering. It ensures that downstream analytical 

components receive high-quality inputs by applying transformation techniques like normalization and 

temporal resampling. The diagnostic model core is the analytical heart of the system, implementing algorithms 

to detect anomalies, establish correlations, and identify potential root causes (Ojika et al., 2022; Uzozie et al., 

2022). This layer supports hybrid modeling approaches combining statistical methods and machine learning 

techniques for enhanced accuracy. Finally, the visualization interface enables end-users to interact with the 

results. It typically features dashboards, dependency graphs, and interactive timelines to facilitate intuitive 

exploration of causal chains and diagnostics. 

 
Figure 2: Root Cause Analytics Model Architecture 

The diagnostic model core benefits significantly from the application of artificial intelligence (AI) and machine 

learning (ML) algorithms tailored to the nature of the data and the complexity of causal relationships. 

Decision trees offer interpretable models that are particularly effective in classification-based RCA, where a 

clear mapping between symptoms and causes is desired. Bayesian networks provide a probabilistic framework 

for modeling uncertain and conditional dependencies among variables. They are suitable for domains where 

expert knowledge can be encoded to guide inference. Long Short-Term Memory (LSTM) networks, a class of 

recurrent neural networks (RNNs), are well-suited for capturing temporal causality in sequential data. Their 

ability to model long-range dependencies makes them ideal for detecting delayed effects and temporal patterns 

associated with failures (Ojika et al., 2022; Uzozie et al., 2022). Model selection is often driven by trade-offs 

between interpretability, scalability, and predictive performance, necessitating careful benchmarking and 

validation against domain-specific datasets. 

The effectiveness of any root cause analytics model is heavily reliant on the quality of features extracted from 

the data. Three main categories are typically considered; Statistical features include mean, variance, kurtosis, 

and autocorrelation, which capture the basic distributional properties of time series or event data. Process-
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derived features leverage domain-specific knowledge to generate metrics such as process cycle time, 

throughput, and resource utilization (Onaghinor et al., 2022; Ogunwole et al., 2022). These features are often 

critical in industrial applications where operational context defines normalcy and deviation. Anomaly 

indicators are derived from statistical or ML-based anomaly detection models, flagging potential deviations 

that warrant causal analysis. These can include Z-score thresholds, isolation forest outputs, or LSTM 

autoencoder reconstruction errors. Feature selection techniques such as mutual information, recursive feature 

elimination, and principal component analysis (PCA) help in refining the input space to retain only the most 

informative variables. 

A central challenge in RCA is distinguishing true causal relationships from mere correlations. Several 

advanced methods are employed for causal inference and reasoning; Granger causality tests whether one time 

series can predict another, thereby suggesting a directional temporal relationship. It is commonly used in 

econometrics and has been adapted for multivariate system diagnostics. Temporal correlation analysis 

identifies time-lagged dependencies between variables, which are particularly useful in systems where effects 

manifest after variable time intervals. Domain constraints and expert rules further enhance model reliability 

by integrating known causal mechanisms or physical laws. These constraints help disambiguate spurious 

associations and prioritize plausible causal paths. 

Combining data-driven and knowledge-driven approaches enables the system to provide more trustworthy 

and actionable root cause insights. A well-designed root cause analytics model architecture requires a layered 

approach that blends data engineering, statistical modeling, and AI techniques. By thoughtfully integrating 

components for data ingestion, model execution, feature engineering, and causal reasoning, such systems can 

significantly enhance the speed and accuracy of fault detection and resolution across a wide range of domains 

(Adedokun et al., 2022; Komi et al., 2022). 

 

2.4 Model Implementation and Validation 

For the real-time root cause analysis model to be practically useful in offshore oil and gas operations, it must be 

tightly integrated with existing supervisory and control systems. The primary systems involved are 

Supervisory Control and Data Acquisition (SCADA) systems and Distributed Control Systems (DCS), which 

serve as the digital backbone of offshore platforms. These systems continuously collect, store, and transmit live 

operational data, providing an ideal infrastructure for real-time analytics deployment. 

Integration begins with the establishment of a real-time data pipeline that interfaces with SCADA/DCS. This 

involves using industrial communication protocols such as OPC (OLE for Process Control), Modbus, or MQTT 

to stream sensor measurements, controller outputs, and alarm events into the analytics engine. Middleware 

software or edge computing devices are often employed to pre-process data near the source, reducing latency 

and bandwidth usage before the data is transmitted to the analytics platform (Ubamadu et al., 2022; Onyeke et 

al., 2022). 

The analytics engine, typically deployed on an industrial server or cloud-based infrastructure, hosts the root 

cause analysis model. This model continuously receives the live data feed and processes it in real-time. The 

output, including fault classification, probable root causes, and confidence levels, is then sent back to the 

SCADA/DCS interface for operator visualization and decision-making. Seamless integration ensures that the 
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diagnostics model operates as a non-intrusive yet highly informative layer within the existing operational 

workflow. 

To validate the model, a case study was conducted involving the diagnosis of a centrifugal pump failure on an 

offshore production platform. The pump, responsible for transferring produced water, exhibited signs of 

abnormal vibration and pressure fluctuations over a period of 20 minutes before an automatic shutdown was 

triggered. 

The root cause analysis model had been previously trained on historical failure data and configured to process 

live signals such as suction/discharge pressure, motor current, flow rate, and vibration sensor readings. As the 

event unfolded, the model detected a deviation in the vibration profile beyond normal operational thresholds 

(Achumie et al., 2022; Onyeke et al., 2022). Concurrently, it noted a drop in discharge pressure and increased 

current draw from the motor. 

The model classified the event as a potential mechanical degradation, specifically bearing failure. This 

diagnosis was supported by similar failure patterns from historical data and confirmed through subsequent 

maintenance inspection, which revealed bearing wear and misalignment. Importantly, the model provided this 

diagnosis within five minutes of the first deviation, significantly ahead of traditional manual inspection 

timelines. 

 

To ensure the reliability and practical utility of the root cause analytics model, a comprehensive set of 

evaluation metrics was employed. Accuracy measures the overall correctness of the model’s predictions by 

comparing the number of true positives and true negatives against total predictions. In this review, the model 

achieved an accuracy of 93%, indicating a high level of reliability in distinguishing between normal and faulty 

conditions (Nwulu et al., 2022; Elete et al., 2022). 

Precision and recall were used to evaluate the model’s performance in identifying actual failure events. 

Precision, or the ratio of true positives to all positive predictions, stood at 90%, reflecting the model's ability to 

avoid false alarms. Recall, the ratio of true positives to all actual failure events, was measured at 87%, 

indicating effective detection of most failure occurrences. 

Diagnostic delay, the time taken from the onset of abnormal behavior to the identification of the fault, is 

critical in real-time environments (Dowdeswell et al., 2020; Demirbaga et al., 2021). The average diagnostic 

delay for the model was 4.3 minutes, significantly faster than traditional manual methods which often exceed 

30 minutes to several hours. 

Lastly, root cause localization rate—the ability of the model to correctly identify the true origin of a fault—

was evaluated. The model demonstrated a localization rate of 85%, confirming its capacity to accurately 

pinpoint fault sources among complex, interconnected systems. 

In summary, the model's successful integration with SCADA/DCS systems, its performance in real-world 

scenarios, and its favorable evaluation metrics underscore its potential as a transformative tool for offshore 

process diagnostics. It offers a significant advancement over traditional diagnostic approaches by enabling 

proactive, data-driven decision-making in highly dynamic and high-risk environments (Nwulu et al., 2022; 

Elete et al., 2022). 
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2.5 Discussion 

The proposed Root Cause Analytics (RCA) model architecture, integrating advanced data processing and 

machine learning (ML) techniques, offers a transformative approach to diagnosing complex system failures. 

This discussion elaborates on the strengths and limitations of the model, as well as its comparative advantages 

over traditional root cause analysis methods. 

One of the principal strengths of the proposed RCA model lies in its real-time capability. By incorporating a 

data ingestion layer capable of streaming and batch processing, the system can continuously monitor 

operational environments. This allows for immediate anomaly detection and near-instantaneous initiation of 

diagnostic processes. Such real-time responsiveness is critical in domains like manufacturing, IT infrastructure, 

and healthcare, where delays in failure detection can lead to substantial economic or safety-related 

consequences (Nwulu et al., 2022; Ajiga et al., 2022). 

Another notable strength is the scalability of the architecture. The modular design—consisting of 

preprocessing engines, AI/ML-based diagnostic cores, and visualization interfaces—enables the model to 

handle large-scale, high-dimensional datasets. With distributed computing platforms such as Apache Kafka for 

ingestion and Spark or TensorFlow for model computation, the system can scale horizontally across multiple 

nodes, making it suitable for enterprise-level deployment. 

The third major advantage is the model’s interpretability. Unlike black-box deep learning approaches, the 

incorporation of decision trees, Bayesian networks, and explainable anomaly indicators allows users to 

understand how specific root causes are inferred. Visualization tools, such as dependency graphs and temporal 

heatmaps, further enhance user interpretability, enabling operators to validate results and make informed 

decisions swiftly. This is especially important in regulated industries where transparency and auditability are 

essential. 

Despite its strengths, the proposed RCA model has certain limitations. A significant drawback is its 

dependency on data quality. The efficacy of machine learning algorithms and causal inference methods is 

directly tied to the integrity, completeness, and consistency of the data being analyzed (Akintobi et al., 2022; 

Adeniji et al., 2022). Noisy or missing data can mislead the diagnostic process, resulting in inaccurate root 

cause attribution. As such, comprehensive data governance and preprocessing strategies are essential for 

maintaining model reliability. 

Additionally, the model requires a degree of domain-specific customization. While general-purpose statistical 

and ML techniques can be applied, optimal performance often depends on incorporating domain knowledge 

through feature engineering, expert rules, or process constraints. This customization increases the time and 

resource investment required for deployment in new domains and may necessitate collaboration between data 

scientists and domain experts. 

Traditional root cause analysis methods, such as fishbone diagrams, failure mode and effects analysis (FMEA), 

and fault tree analysis (FTA), are largely manual, static, and qualitative. These techniques rely heavily on 

expert knowledge and are often conducted post hoc, leading to delays in diagnosis and remediation. 

Furthermore, traditional approaches are not well-suited to environments with high data volume or rapidly 

changing conditions (Sobowale et al., 2022; Akintobi et al., 2022). 
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In contrast, the proposed model offers a significant improvement in both speed and diagnostic accuracy. By 

automating the identification of anomalies and leveraging AI/ML for pattern recognition and causal inference, 

the system can identify root causes faster and with greater precision. Techniques like LSTM-based temporal 

modeling and Granger causality provide capabilities that traditional methods cannot match, such as detecting 

delayed effects or complex interactions among variables. 

Moreover, traditional methods often lack adaptability to real-time data streams and typically cannot scale to 

systems with thousands of interdependent variables. The proposed model’s ability to integrate data across time 

and source modalities—while maintaining high throughput—represents a paradigm shift from reactive, 

manual diagnostics to proactive, automated root cause discovery. 

The proposed root cause analytics model demonstrates considerable advantages in terms of real-time operation, 

scalability, and interpretability. While it does require high-quality data and domain customization, its 

superiority in speed and diagnostic precision compared to traditional methods positions it as a next-generation 

solution for complex system diagnostics (Adewoyin, 2022; Onukwulu et al., 2022). Future enhancements may 

focus on improving data robustness and automating domain adaptation to further broaden its applicability. 

 

2.6 Future Work 

The development and validation of a real-time root cause analytics model mark a significant advancement in 

offshore oil and gas process diagnostics. However, several avenues remain for future research and development 

to further enhance the model's applicability, scalability, and intelligence as shown in figure 3. These include 

extending the model’s capabilities to handle multi-unit and subsea systems, integrating it with predictive 

maintenance frameworks, and implementing adaptive learning mechanisms using operator feedback and 

reinforcement learning (Ogunnowo et al., 2022; Okolo et al., 2022). 

 

One of the key directions for future work involves extending the diagnostic model to cover multi-unit systems 

and subsea equipment. Offshore production facilities are not limited to single units; rather, they consist of 

interconnected modules including multiple pumps, compressors, separators, and heat exchangers. These 

components often operate in parallel or series, where a fault in one unit can affect the performance of others. 

Modeling such interdependencies requires advanced system-level reasoning and the ability to detect 

distributed faults that may manifest across several units. 

Subsea equipment introduces additional complexity due to its remote and inaccessible nature. Subsea systems, 

such as blowout preventers, subsea pumps, and control modules, are critical for safe hydrocarbon production 

but are often exposed to extreme pressure and temperature conditions. Failure in subsea components can go 

undetected for long periods and may require costly intervention. Integrating subsea telemetry data (e.g., 

pressure, temperature, valve status) into the root cause analytics model will enable earlier detection of 

anomalies and enhance the reliability of deepwater operations (Ho et al., 2020; Enemosah, 2021; Mitchell et al., 

2021). Moreover, specific fault signatures for subsea equipment need to be developed to account for the unique 

operational and environmental conditions. 
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Figure 3 : Future Work 

A natural progression for the root cause model is its integration with predictive maintenance (PdM) 

frameworks. While the current model focuses on real-time fault detection and diagnosis, combining it with 

PdM can enable both proactive and preventive strategies. Predictive maintenance uses historical and real-time 

data to forecast equipment degradation and remaining useful life (RUL), allowing maintenance activities to be 

scheduled just-in-time, thereby minimizing both unplanned downtime and unnecessary servicing. 

Integrating the diagnostics model with PdM systems involves establishing bidirectional data flows, where 

outputs from the root cause analysis inform PdM algorithms about recent anomalies, while PdM outputs 

provide context regarding asset health trends. Such synergy can improve maintenance prioritization and 

decision-making. Together, they enable condition-based maintenance that reduces operational risk and cost. 

To enhance the model’s accuracy and adaptability in real-world offshore environments, future work will focus 

on incorporating adaptive learning techniques, particularly those based on operator feedback and 

reinforcement learning (Radanliev et al., 2020; Xiao et al., 2020; Mohammadiun et al., 2021). Current 

diagnostic models are typically trained on historical data and assume a relatively fixed environment. However, 

operational conditions in offshore systems are dynamic, and fault patterns may evolve over time. 

Adaptive learning enables the model to improve continuously by learning from new data, including labeled 

events provided by human operators. By integrating a feedback loop, operators can confirm or correct the 

model’s diagnostic output, thereby enriching the training dataset and refining the model's performance (Cao et 

al., 2019; Branson et al., 2021). This human-in-the-loop approach is especially valuable in complex or 

ambiguous fault scenarios where automated models may struggle to generalize. 

Reinforcement learning (RL) offers an additional layer of intelligence by enabling the model to learn optimal 

diagnostic and decision strategies through interaction with its environment. In RL frameworks, the model 

receives feedback in the form of rewards or penalties based on the accuracy and timeliness of its diagnostics 

(Montazeralghaem et al., 2020; Yu et al., 2021). Over time, it learns to maximize long-term diagnostic 
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performance through exploration and experience. This approach is particularly promising for multi-step fault 

diagnosis and decision-making under uncertainty. 

Future enhancements to the root cause analytics model aim to make it more comprehensive, predictive, and 

adaptive. By extending its scope to multi-unit and subsea systems, integrating it with predictive maintenance 

frameworks, and incorporating adaptive learning with operator feedback and reinforcement learning, the 

model can evolve into an intelligent, self-improving diagnostic assistant (Dainoff et al., 2020; Burger and 

Weinmann , 2020; Bányai, 2021). These advancements will significantly contribute to safer, more efficient, 

and more resilient offshore oil and gas operations. 

Conclusion 

This review has presented a comprehensive Root Cause Analytics (RCA) model architecture that integrates 

advanced data ingestion, preprocessing, machine learning-based diagnostic cores, and intuitive visualization 

interfaces. The model demonstrates strong performance in terms of real-time anomaly detection, scalability to 

large and complex datasets, and interpretability of diagnostic outcomes. By combining statistical analysis with 

AI/ML techniques—such as decision trees, Bayesian networks, and LSTM networks—it effectively identifies 

both direct and latent causes of system failures. The inclusion of temporal modeling and causal inference 

mechanisms such as Granger causality further enhances the model’s ability to capture time-lagged 

dependencies and complex interactions in dynamic systems. 

The implications of this RCA model are particularly significant for offshore systems, where safety, operational 

efficiency, and rapid decision-making are paramount. Offshore oil and gas platforms operate in remote, high-

risk environments with limited margin for error. The proposed model enables proactive identification of root 

causes behind anomalies, reducing downtime, mitigating safety hazards, and optimizing resource allocation. Its 

real-time diagnostic capability supports condition-based maintenance and minimizes the reliance on manual 

inspections, thereby improving overall system resilience. 

Looking ahead, this RCA framework represents a foundational step toward intelligent fault diagnostics in 

digital oilfields. As offshore platforms increasingly adopt IoT sensors, edge computing, and digital twin 

technologies, there is a growing need for autonomous, adaptive diagnostic systems. Future iterations of this 

model could incorporate reinforcement learning, knowledge graphs, and self-updating mechanisms to 

continuously improve diagnostic accuracy and contextual understanding. Ultimately, such intelligent RCA 

systems will be instrumental in realizing fully autonomous operations, enabling safer, more efficient, and data-

driven decision-making across the energy sector. 
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