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ABSTRACT 

Recently, the behavior of different epidemic models and their relation both 

to different types of geometries and to some biological models has been 

revisited. Path equations representing the behavior of epidemic models and 

their corresponding deviation vectors are examined. A comparison between 

paths and their deviation vectors in Riemannian and Finslerian Geometries 

is presented. 
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1. Introduction- In this study, we are going to describe a specific susceptive-infective (SI)-model of epidemics 

[1] using Antonelli's approach of describing two species in ecology geometrically [2]. This approach has been 

successfully used in case of wild rabbit disease as well as coral-starfish equilibrium[5]. Also, allometric 

relationship between net production biomass and the amount of secondary compound plants produced to 

defend against herbivores can be geometrized as well as corresponding interaction condiments are taken to 

be constant. The aim of this work is to apply Antonelli's idea of imposing geometrical paths defined in metric 

spaces extracted from stochastic allometry space in Riemannian geometry to obtain a better nonlinear 

regression formula with geometrical origin [2] . The importance of allometry space, due to Antonelli's 

approach, is to obtain a space having a positive definite metric with negative curvature acting as a tool to 

examine the behavior of growth curves. Thus, any additive terms associated with geometrical structures are 

useful for adjusting a proper path describing the behavior of any epidemic curve. Since 1990s Antonelli's 

approach has been extended to include other types of geometries such as Finsler geometry rather than 

Riemannian[3]. Consequently, Antonelli and Bradbury (1997) have used Gompertz growth and allometric 

relationships to build a dynamical theory of ecology, evolution and development in colonial organisms using 

Finslerian Geometry. Accordingly, geometrization of SI-model can be considered as an introductory step to 

the geometric version of SIR-model and others. Moreover, this approach has been extended to include 

Finslerian Geometry due to its richness of imposing many interacting factors geometrically rather than the 
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Riemannian one [5]. The importance of geometrizing such a model is to construct the path equations and 

their corresponding path deviation equations to know the behavior of the growth curves and their effect 

after a slight perturbation on them. This can be seen by studying the stability conditions from examining the 

motion of path deviation equations. In the present work, we are going to utilize the nonlinear version of 

allometry for obtaining the relevant equations of epidemics in SI-models using different types of geometries 

with some details on its extension to include SIR models and others by increasing the dimension of the 

manifold. This type of extending dimensions to examine various epidemic models will be examined in our 

future work. 

2. Historical Background 

2.1. SI-Model of Epidemics 

It is well known that the simplest model of describing population growth stems from the famous 

LotkaVolterra model which can be expressed as follows [6]: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛼1𝑆(𝑡)𝐼(𝑡) 

and 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼1𝑆(𝑡)𝐼(𝑡), 

where 𝑆(𝑡) the susceptive class 𝐼(𝑡), the infected class and 𝛼1 is a parameter. Equations (1) and (2) can be 

related together using the following condition: 

𝑆(𝑡) + 𝐼(𝑡) = 1. 

The above model has been modified, to accommodate some other factors based on some oscillations either 

internally or externally. In this study, it is sufficient to display the amended version owing to this extra factor 

to take the following form [7] 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛼1𝑆(𝑡)𝐼(𝑡) + 𝛼2𝑆(𝑡) 

and 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼1𝑆(𝑡)𝐼(𝑡) + 𝛼2𝐼(𝑡) 

where 𝛼2 is another a parameter with a constant coefficient. This model has been applied using deterministic 

and stochastic approaches in the following subsections. 

2.2. Deterministic Approach of Epidemics 
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3. SI-Model of Epidemics: 

The concept of deterministic models is essentially depending on the concept of threshold of an epidemic, 

may be expressed in the following way 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝜆𝑆(𝑡)𝐼(𝑡) − 𝛿𝑆(𝑡) + 𝛾𝐼(𝑡) + 𝛿 

and 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜆𝑆(𝑡)𝐼(𝑡) + (𝛾 + 𝛿)𝐼(𝑡) 

where 𝜆,
1

𝛿
, and 

1

𝛾
 stand for average number of contacts per infective per day, and average period of infectivity 

respectively. 

Substituting (2) into equations (6) and (7) one obtains 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜆𝐼(𝑡)2 + (𝜆 − 𝛾 − 𝛿)𝐼(𝑡). 

The above set of equations can be applied to describe the evolution of some epidemics such as plague, malaria, 

meningitis. The significance of expressing any epidemic model in terms of differential equations is due to 

large number of the population size. 

Accordingly, the continuous variables play for this task. From the above description, it is possible to consider 

an example for some fatal diseases by suggesting the following set of equations 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝜆𝑆(𝑡)𝐼(𝑡) + (𝛾 + 𝛿)𝐼(𝑡) 

and 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜆𝑆(𝑡)𝐼(𝑡) − (𝛾 + 𝛿 + 𝜂)𝐼(𝑡) 

where 
1

(𝛾+𝛿)
 and 𝜂 denote the death-adjusted period of infectivity and the rate of daily death respectively. 

If one takes 𝜆 = 1, 𝛾 = 0.2, 𝛿 = 0.0001, 𝜂 = 0.2 [8], then equations (9) and (10) become 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝑆(𝑡)𝐼(𝑡) + (0.2001)𝐼 

and 
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𝑑𝐼(𝑡)

𝑑𝑡
= 𝑆(𝑡)𝐼(𝑡) − 0.4001𝐼(𝑡). 

4. SIR-Model of Epidemics: 

If there is a chance of recovery or removal by death, another model can be expressed such as the susceptive-

infective-recovered (SIR) model as described in the following set of equations 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝜆𝑆(𝑡)𝐼(𝑡) − 𝛿𝑆(𝑡) + 𝛾𝐼(𝑡) + 𝛿,

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜆𝑆(𝑡)𝐼(𝑡) + (𝛾 + 𝛿)𝐼(𝑡)

 

and 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) 

provided that: 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1, 

where 𝑅(𝑡) is the removed class of susceptibleinfection caused by isolation, immunity or even death. The 

above set of equations can be expressed only (𝑆(𝑡) and 𝐼(𝑡), 

𝑑𝐼(𝑡)

𝑑𝑆(𝑡)
= −1 +

𝛾

𝜆𝑆(𝑡)
 

It is well known that 
𝛾

𝜆
 represents the infectious contact number. 

In case of SIR model having a temporary immunity without changing the threshold phenomenon. Equation 

(13) can be modified by imposing such a parameter to express the daily loss immunity rate (𝛼), to become 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝜆𝑆(𝑡)𝐼(𝑡) − 𝛿𝑆(𝑡) + 𝛾𝐼(𝑡) + 𝛿 + 𝛼𝑅(𝑡). 

Thus, for two practical examples of SIR models can be obtained if one can substitute (i) 𝛼 = 0.02, 𝛿 = 0.0001, 

𝜆 = 0.1 with taking into consideration that the infectious contact number = 0.2 

𝑑𝑆(𝑡)

𝑑𝑡
= −0.1𝑆(𝑡)𝐼(𝑡) − 0.0001𝑆(𝑡) + 𝛾𝐼(𝑡) + 𝛿 + 𝛼𝑅(𝑡). 

(ii) 𝛼 = 0.02, 𝛿 = 0.0001, 𝜆 = 0.4 with taking into consideration that the infectious contact number = 2( see, 

[8]). 

4.1. Stochastic Approach of Epidemic Model 

A simple example of a stochastic version of epidemic model can be described in the following way 
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𝑑𝑁(𝑡)

𝑑𝑡
= −𝑚𝑁(𝑡) 

where 𝑚 is a positive rate constant and 𝑁(𝑡) denotes the size of a population whose rate constant is based on 

a specific type of probability distribution defined by a bivariate gamma distribution [9]. Accordingly, SI-

model, can be expressed stochastically as follows 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝑚𝑆(𝑡) 

and 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑚𝐼(𝑡) 

4.2. The Concept of Allometry 

In 1936, Sir Julian Huxley introduced the concept of allometry, or the experimental study of relative growth 

of parts of animals, via log - log plots of measurements of morphological characteristics of individuals in a 

Euclidean geometry. In these plots resulted straight lines via statistical method of least squares. Around the 

same time Sir Joseph Needham made some experimental work to show that straight lines allometries. 

In 1944, J. Kittredge used the same concept to estimate the crown biomass of trees in forest stand by 

measuring the trunk girth, or diameter at breast height. Again some experiments of botanist J. Harper in 1962 

who found Gompertz curves the best ones to fit for describing the growth of simple aquatic plants. 

By 1965 Laird studied on vertebrate growth using Huxlely's allometric law as well. Several applications of 

concept of allometry have been discussed in detail. Recently, Karl Niklas (1994) has recorded a variety 

growing plants and flowers satisfying the allometric concept as well [10]. 

It is well known that, Antonelli and Voorhees (1974) have suggested the following metric in order to define 

geometrically the behavior of growth curves using allometric space [4]. 

𝑔𝑖𝑗 = 𝑒−2𝛼𝑘𝑥
𝑘
𝛿𝑖𝑗 , 

and its affine connection is given by 

Γ.𝑗𝑘
𝑖 =

1

2
𝑔𝑖𝑙(𝑔𝑙𝑘,𝑗 + 𝑔𝑗𝑙,𝑘 − 𝑔𝑗𝑘,𝑙), 

where 𝑔𝑖𝑗 is the the matrix inverse of 𝑔𝑖𝑗. Suppose 𝛼𝑖 is a constant vector to define the Christoffel symbol in 

the following way: 
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Γ.𝑖𝑖
𝑖 = −𝛼𝑖 =  constant 

Γ.𝑗𝑗
𝑖 = 𝛼𝑖 =  constant , 𝑖 ≠ 𝑗

Γ.𝑗𝑖
𝑖 = 0, 𝑖 ≠ 𝑗.

 

Thus the metric condition 

𝑔𝑖𝑗;𝑘 = 0 

becomes 

𝑒−2𝛼𝑚𝑥𝑚𝛿𝑖𝑗𝑘 − 𝑒−2𝛼𝑚𝑥𝑚𝛿𝑖𝑛Γ𝑘
𝑛𝑗
− 𝑒−2𝛼𝑚𝑥𝑚𝛿𝑛𝑗Γ𝑘𝑖

𝑛 = 0,

−2𝛼𝑘𝛿𝑖𝑗 − 𝑒−2𝛼𝑚𝑥𝑚𝛿𝑖𝑛Γ𝑘
𝑛𝑗
− 𝑒−2𝛼𝑚𝑥𝑚𝛿𝑛𝑗Γ𝑘𝑖

𝑛 = 0,
 

and 

𝛾𝑘𝛿𝑖𝑗 = 𝛿𝑖𝑛Γ𝑘𝑗
𝑛 + 𝛿𝑗𝑛Γ𝑖𝑘

𝑛 . 

We can find out that the Riemann-Christoffel Curvature 

𝑅𝑎𝑏𝑑
𝑐 = Γ𝑎𝑑,𝑏

𝑐 − Γ𝑎𝑏,𝑑
𝑐 + Γ𝑎𝑑

𝑚Γ𝑚𝑏
𝑐 − Γ𝑎𝑏

𝑚Γ𝑚𝑑
𝑐 , 

has reduced to 

𝑅𝑎𝑏𝑑
𝑐 = Γ𝑎𝑑

𝑚Γ𝑚𝑏
𝑐 − Γ𝑎𝑏

𝑚Γ𝑚𝑑
𝑐  

Substituting (25) and (26) into equations (31) and (32), one obtains the non vanishing components of the 

curvature tensor, 

𝑅𝑗𝑖𝑗
𝑖 = ∑  

𝑘≠𝑖,𝑗

  (𝛼𝑘)
2, 𝑖 ≠ 𝑗

𝑅𝑗𝑗𝑙
𝑖 = 𝛼𝑖𝛼𝑗, 𝑖 ≠ 𝑗 ≠ 𝑙.

 

5. Geometerization of Epidemics 

5.1. Equations of Epidemics in Riemannian version of SI-Model- It is well known that path equations of any 

growth curves can be obtained if the variation principle is applied on Lagrangian functions. This trend of 

imposing biological action principle has been established prior to Euler by Mauphritiscf.[10] 

𝐿 = 𝑔𝑎𝑏𝑈
𝑎𝑈𝑏[10] 

However, in this approach, we are going to obtain path and path deviation equations from one single 

lagrangian using the BazanskiLagrangian [13]: 
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𝐿 = 𝑔𝑎𝑏𝑈
𝑎
𝐷Ψ𝑏

𝐷𝑡
 

where 𝑎, 𝑏 = 1,2,3, . . 𝑛 and 
𝐷Ψ𝛼

𝐷𝑡
 is the covariant derivative with respect to a parameter𝑡. 

Taking the variation with respect to the deviation vector Ψ𝑐  and the tangent vector 𝑈𝑐  respectively one 

obtains path equation 

𝑑𝑈𝑐

𝑑𝑡
+ Γ𝑎𝑏

𝑐 𝑈𝑎𝑈𝑏 = 0 

and path deviation equation 

𝐷2Ψ𝑐

𝐷𝑡2
= 𝑅𝑎𝑏𝑑

𝑐 𝑈𝑎𝑈𝑏Ψ𝑑 

Thus, the path and path deviation equations of the SImodel can be obtained from the following 

BazanskiLagrangian [13] 

𝐿 = 𝑔𝜇𝜈𝑈𝑆𝐼
𝜇 𝐷Ψ𝑆𝐼

𝜈

𝐷𝑡
 

where 𝑈𝑆𝐼
𝜇
= (𝑆, 𝐼) and Ψ𝑆𝐼

𝜈 = (Ψ𝑆, Ψ𝐼). 

Accordingly, if we take the variation with respect to the deviation vector Ψ𝜎  to get the following 

components of path equation 

𝑑𝑆

𝑑𝑡
+ Γ11

1 𝑆2 + Γ22
1 𝐼2 + 2Γ12

1 𝑆𝐼 = 0 

and 

𝑑𝐼

𝑑𝑡
+ Γ11

2 𝑆2 + Γ22
2 𝐼2 + 2Γ12

2 𝑆𝐼 = 0. 

And taking the variation with respect to velocity vector 𝑈𝜎 to get the corresponding components of path 

deviation equation [14] : 

𝐷2Ψ𝑆

𝐷𝑡2
= 𝑅112

1 𝑆2Ψ𝐼 + 𝑅121
1 𝑆𝐼Ψ𝑆

+𝑅212
1 𝑆𝐼Ψ𝐼 + 𝑅221

1 𝐼2Ψ𝑆

 

and 
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𝐷2Ψ𝐼

𝐷𝑡2
= 𝑅112

2 𝑆2Ψ𝐼 + 𝑅121
2 𝑆𝐼Ψ𝑆

+𝑅212
2 𝑆𝐼Ψ𝐼 + 𝑅221

2 𝐼2Ψ𝑆

 

Consequently, we can suggest the path and path deviation equations of a modified 𝑆𝐼 model can be following 

Lagrangian: 

𝐿 = 𝑔𝜇𝜈𝑈𝑆𝐼
𝜇 𝐷Ψ𝑆𝐼

𝜈

𝐷𝑡
+ 𝜆Ψ𝜇𝑈

𝜇 

to give, 

𝑑𝑈𝑆𝐼
𝑎

𝑑𝑡
+ Γ𝑏

𝑎𝑐𝑈𝑆𝐼
𝑏𝑈𝑆𝐼

𝑐 = 𝜆𝑎𝑈𝑆𝐼
𝑎 , 

which can be expressed by components as follows 

𝑑𝑆

𝑑𝑡
+ Γ11

1 𝑆2 + 2Γ12
1 𝑆𝐼 + Γ22

1 𝐼2 = 𝜆‾𝑆 

and 

𝑑𝐼

𝑑𝑡
+ Γ11

2 𝑆2 + 2Γ12
2 𝑆𝐼 + Γ22

2 𝐼2 = 𝜆‾𝐼 

i.e. 

𝑑𝑆

𝑑𝑡
+ 2𝛽‾𝑆𝐼 − 𝛼‾𝐼2 + 𝛼‾𝑆2 = 𝜆‾𝑆 

and 

𝑑𝐼

𝑑𝑡
+ 2(𝛼‾ − 𝛽‾𝐿)𝑆𝐼 − (𝛽‾ + 𝛼‾𝐿)𝑆 + (𝛼‾ − 𝛽‾𝐿)𝐼2 = 𝜆‾𝐼. 

And their corresponding path deviation equations become as follows: 

𝐷2Ψ𝑆𝐼
𝑎

𝐷𝑡2
+ 𝜆‾

𝐷Ψ𝑆𝐼
𝑎

𝐷𝑡
= 𝑅𝑏𝑐𝑑

𝑎 𝑈𝑆𝐼
𝑏𝑈𝑆𝐼

𝑐 Ψ𝑆𝐼
𝑑  

i.e. 

𝐷2Ψ𝑆

𝐷𝑡2
+ 𝜆‾

𝐷Ψ𝑆

𝐷𝑡
= 𝑅112

1 𝑆2Ψ𝐼 + 𝑅121
1 𝑆𝐼Ψ𝑆

+𝑅212
1 𝑆𝐼Ψ𝐼 + 𝑅221

1 𝑆2Ψ𝑆

 

and 
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𝐷2Ψ𝐼

𝐷𝑡2
+ 𝜆‾

𝐷Ψ𝐼

𝐷𝑡
= 𝑅112

2 𝑆2Ψ𝐼 + 𝑅121
2 𝑆𝐼Ψ𝑆

+𝑅212
2 𝑆𝐼Ψ𝐼 + 𝑅221

2 𝐼2Ψ𝑆

 

5.2. Berwald type- The metric tensor of Berwald type in Finslerian geometry can be described as follows [12] 

𝑔𝑦 = ∂̇𝑖 ∂̇𝑗 (
1

2
𝐹2) 

such a metric tensor is called a Minkowoski space with Finslerian norm 𝑑𝑠 = 𝑓(𝑑𝑥1, 𝑑𝑥2) . Thus, its 

corresponding geodesic can be described as 

𝑑2𝑥𝑖

𝑑𝑡2
+ Γ̂𝑗𝑘

𝑖 (𝑥, 𝑦)
𝑑𝑥𝑗

𝑑𝑡

𝑑𝑥𝑘

𝑑𝑡
= 0 

such that 

Γ̂𝑗ℎ
𝑖 =

1

2
𝑔𝑖𝑚(𝛿ℎ𝑔𝑗𝑚 + 𝛿𝑗𝑔𝑚ℎ − 𝛿𝑚𝑔𝑗ℎ), 

where 𝛿ℎ is a partial derivative with respect to nonlinear connection. 

𝛿ℎ = ∂ℎ − Γ𝑗ℎ
𝑖 (𝑥)

∂

∂𝑦ℎ

�̂�.𝑗𝑘
𝑖 =

1

2
𝑔𝑖𝑙 (

∂𝑔𝑙𝑘
∂𝑦𝑗

+
∂𝑔𝑗𝑙

∂𝑦𝑘
−
∂𝑔𝑗𝑘

∂𝑦𝑙
)

 

The Berwald type has some associated curvatures are defined in the following way [11]: 

𝐵𝑘𝑗ℎ
𝑖 = 𝑅𝑘𝑗ℎ

𝑖 + 𝐺𝑗
𝑟𝐷𝑟ℎ𝑘

𝑖 − 𝐺𝑘
𝑟𝐷𝑟ℎ𝑗

𝑖  

where 

𝐺𝑗
𝑖 = Γ̂𝑗𝑘

𝑖 𝑦𝑗 −
1

2
𝑔𝑖𝑚Γ̂𝑗𝑘

𝑙 ∂𝑔𝑚𝑙

∂𝑦𝑙
𝑦𝑗𝑦𝑘 

and 

𝐷𝑘𝑗ℎ
𝑖 =

∂3𝐻2
𝑖

∂𝑦𝑗 ∂𝑦𝑘 ∂𝑦𝑙
, 

such that 

Γ̂𝛼1𝛼2𝛼3…𝛼𝑚
𝑖 =

1

𝑚!

∂𝑚𝐻(𝑚)

∂𝑦𝛼1 ∂𝑦𝛼2 ∂𝑦𝛼3 … . ∂𝑦𝛼𝑚
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5.3. SI-Model in Finsler Geometry- In 1991 Antonelli developed such a metric for 2dimensional Berwald 

space with locally constant coefficients to become [3] 

𝐹2 = 𝑒2𝛼𝑖𝑋
𝑖(𝐿2+1)((�̇�1)2 + (�̇�2)2), 𝑖 = 1,2 

where 𝑋1 and 𝑋2 are Cartesian coordinates on 𝑅2 and 𝐿 acts as a perturbation parameter. The above relation 

can be related to Riemananian geometry by relaxing the term 𝐿 

𝑔‾𝑖𝑗(𝑋, �̇�) = 𝑒2𝛼𝑖𝑋
𝑖(𝐿2+1)𝑔𝑖𝑗 

The above system of equations together with their corresponding deviation vector equations can be obtained 

from taking the action principle to the following Lagrangian. 

𝐿𝐵𝐹 = 𝑔𝑖𝑗(𝑥, 𝑦)�̇�
�̂�Ψ̂𝑗

�̂�𝑡
 

such that 

�̂�Ψ̂𝑖

�̂�𝑡
=
𝑑Ψ̂𝑖

𝑑𝑡
+ Γ̂𝑗ℎ

𝑖 Ψ̂𝑗𝑈ℎ + 𝐶𝑗ℎ
𝑖 Ψ̂𝑗𝑉ℎ, 

where 𝑉ℎ =
𝛿𝑦

𝛿𝑡
. 

Accordingly, the geodesic equation may be as follows 

𝑑2𝑥𝑖

𝑑𝑡2
+ Γ̂𝑗ℎ

𝑖 (𝑥, 𝑦)𝑦𝑗𝑦ℎ = 0, 

i.e. 

𝑑𝑆

𝑑𝑡
+ 2(𝛽‾ + 𝛼‾𝐿)𝑆𝐼 + (𝛽‾𝐿 − 𝛼‾)𝐼2 + (𝛼‾ − 𝛽‾𝐿)𝑆2 = 0 

and 

𝑑𝐼

𝑑𝑡
+ 2(𝛼‾ − 𝛽‾𝐿)𝑆𝐼 − (𝛽‾ + 𝛼‾𝐿)𝑆2 + (𝛼‾ − 𝛽‾𝐿)𝐼2 = 0 

and its deviation equation 

�̂�2Ψ̂𝑎

�̂�𝑡2
= 𝐵𝑏𝑐𝑑

𝑎 𝑈𝑏𝑈𝑐Ψ̂𝑑 

become 
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�̂�2Ψ̂𝑆

�̂�𝑡2
= 𝐵112

1 𝑆2Ψ̂𝐼 + 𝐵121
1 𝑆𝐼Ψ̂𝑆

+𝐵212
1 𝑆𝐼Ψ̂𝐼 + 𝐵221

1 𝐼2Ψ̂𝑆,

 

and 

�̂�2Ψ̂𝐼

�̂�𝑡2
= 𝐵112

2 𝑆2Ψ̂𝐼 + 𝐵121
2 𝑡𝑆𝐼Ψ̂𝑆

+𝐵212
2 𝑆𝐼Ψ̂𝐼 +𝐵221

2 𝐼2Ψ̂𝑆.

 

Similarly, applying Antonelli's method to define Volterra's equation in ecology [3], we obtain the its 

corresponding part of the SI-model in Berwald space 

𝑑𝑆

𝑑𝑡
+ Γ̂11

1 𝑆2 + 2Γ̂12
1 𝑆𝐼 + Γ̂22

1 𝐼2 = 𝜆‾𝑆 

and 

𝑑𝐼

𝑑𝑡
+ Γ̂11

2 𝑆2 + 2Γ̂12
2 𝑆𝐼 + Γ̂22

2 𝐼2 = 𝜆‾𝐼. 

The coefficients of its affine connection become: 

Γ̂11
1 = 𝛼1 − 𝛼2𝐿,

Γ̂22
1 = −(𝛼1 − 𝛼2𝐿),

 

Γ̂12
1 = Γ̂21

1 = −(𝛼2 + 𝛼1𝐿),

Γ̂12
2 = Γ̂21

1 = −(𝛼1 − 𝛼2𝐿),

Γ̂11
2 = −(𝛼2 + 𝛼1𝐿)

Γ̂22
2 = −(𝛼2 + 𝛼1𝐿).

 

Thus, the components of path equations are expressed as follows: 

𝑑𝑆

𝑑𝑡
+ 2(𝛽‾ + 𝛼‾𝐿)𝑆𝐼 + (𝛽‾𝐿 − 𝛼‾)(𝐼)2 + (𝛼‾ − 𝛽‾𝐿)(𝑆)2 = 𝜆‾𝑆 

and 

𝑑𝐼

𝑑𝑡
+ 2(𝛼‾ − 𝛽‾𝐿)𝑆𝐼 − (𝛽‾ + 𝛼‾𝐿)𝑆2 + (𝛼‾ − 𝛽‾𝐿)𝐼2 = 𝜆‾𝐼. 

Equations (80) and (81) are obtained by taking the variation with respect the corresponding deviation vector 

of the following modified BazanskiLagrangian 

𝐿 = 𝑔‾𝑎𝑏�̇�
𝑎
�̂�Ψ̂𝑏

�̂�𝑡
+ 𝜆‾Ψ𝑎�̇�

𝑎. 
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Also, after some multiplications, we can find their corresponding deviation equations by taking the variation 

with respect to �̇�𝑐 to become: 

�̂�2Ψ𝑆

�̂�𝑡2
+ 𝜆

�̂�Ψ̂𝑆

𝐷𝑡
= 𝐵112

1 𝑆2Ψ̂𝐼 + 𝐵121
1 𝑆𝐼Ψ̂𝑆

+𝐵212
1 𝑆𝐼Ψ̂𝐼 + 𝐵221

1 𝐼2Ψ̂𝑆

 

and 

�̂�2Ψ̂𝐼

�̂�𝑡2
+ 𝜆

�̂�Ψ̂𝐼

𝐷𝑡
= 𝐵112

2 𝑆2Ψ̂𝐼 + 𝐵121
2 𝑆𝐼Ψ̂𝑆

+𝐵212
2 𝑆𝐼Ψ̂𝐼 +𝐵221

2 𝐼2Ψ̂𝑆.

 

5.4. Antonelli-Finsler Metric Function- In order to generalize the previous metric in (63) Antonelli has 

modified Finsler metric to become [12]: 

𝐹 = 𝑒𝜙 (∑  

𝑛

𝑖=1

  (�̇�𝑖)
𝑚
)

1
𝑚

 

where 𝑚 ≥ 2 and 𝑛 = 2. Thus their corresponding components of its affine connection are given as : 

Γ̂11
1 = 𝜎1 −

1

9
𝛽1 (

𝐼

𝑆
)

4
3
,

Γ̂21
1 =

4

9
𝛽1 (

𝐼

𝑆
)

4
3
+
1

2
𝛾12,

Γ̂22
1 =

2

9
𝛽1 (

𝑆

𝐼
)

2
3
,

 

Γ̂22
2 = 𝜎2 −

1

9
𝛽2 (

𝑆

𝐼
)

4
3
. 

Consequently, the Bazanski method of obtaining path and path deviation equations becomes in the following 

way: 

[i] The components of Path Equations: 

𝑑𝑆

𝑑𝑡
+ 𝜎1𝑆

2 + 𝜎2 (
𝑚

𝑚 − 1
)𝑆𝐼 +

𝜎1
𝑚 − 1

(
𝐼

𝑆
)
𝑚−2

𝐼2 = 𝜆1𝑆 

and 

𝑑𝐼

𝑑𝑡
+ 𝜎2𝐼

2 + 𝜎1 (
𝑚

𝑚 − 1
)𝑆𝐼 +

𝜎2
𝑚 − 1

(
𝐼

�̇�
)

𝑚−2

𝐼2 = 𝜆2𝐼. 



Volume 6, Issue 5, September-October-2023 | www.shisrrj.com 

 MS Ojha, Prof. Manoj Kumar Srivastava Sh Int S Ref Res J, September-October-2023, 6 (5) :  30-47 

 

 

 

 

 

 

42 

[ii] The components of Path Deviation Equations: 

�̂�2Ψ𝑆

�̂�𝑡2
+ 𝜆

�̂�Ψ̂𝑆

𝐷𝑡
= 𝐵‾112

1 𝑆2Ψ𝐼 + 𝐵‾121
1 𝑆𝐼Ψ𝑆

+𝐵‾212
1 𝑆𝐼Ψ𝐼 + 𝐵‾221

1 𝑆 ∗ 2Ψ𝑆

 

and 

�̂�2Ψ̂𝐼

�̂�𝑡2
+ 𝜆

�̂�Ψ̂𝐼

𝐷𝑡
= 𝐵‾112

2 𝑆2Ψ𝐼 + 𝐵‾121
2 𝑆𝐼Ψ𝑆

+𝐵‾212
2 𝑆𝐼Ψ𝐼 +𝐵‾221

2 𝑆 ∗ 2Ψ𝑆,

 

where 𝐵‾𝑏𝑐𝑑
𝑎 = Γ̂𝑎𝑑,𝑏

𝑐 − Γ̂𝑎𝑏,𝑑
𝑐 + Γ̂𝑎𝑑

𝑚 Γ̂𝑚𝑏
𝑐 − Γ̂𝑎𝑏

𝑚 Γ̂𝑚𝑑
𝑐 . 

Thus, it is well known to find from AntonelliFinsler SI-model the appearance of an interaction between 𝑆&𝐼 

which is vitally important when 𝑚 > 2  as well as for cases of increasing dimensions to examine the 

possibility to geometrize SIR models. 

6. Geomertization of SIR Model- In a similar way, we can extend our study to examine SIR model using the 

Bazanski method in each Riemannian and Finslerian to become: 

(i) For Riemannian Geometry 

𝐷𝑆

𝐷𝑡
= 0

𝐷𝐼

𝐷𝑡
= 𝛼𝐼

 

and 

𝐷𝑅

𝐷𝑡
= 0. 

The above equation can easily be obtained by assuming the following Lagrangian: 

𝐿 = 𝑔𝜇𝜈𝑈𝑆𝐼𝑅
𝜇𝐷Ψ𝑆𝐼𝑅

𝜈

𝐷𝑡
+ 𝛼(𝜇)Ψ𝑆𝐼𝑅𝜈𝑈𝑆𝐼𝑅

𝜈,

𝜇𝜈 = 1,2,3

 

where 𝛼(𝜇) is an arbitrary constant. From this perspective, we can develop the SIR model in its geometric 

version as follows 

𝐷𝑈𝑆𝐼𝑅
𝜇

𝐷𝑡
= 𝛼(𝜇)𝑈𝑆𝐼𝑅

𝜇
, 

and their corresponding deviation equations become: 
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𝐷2Ψ𝑆𝐼𝑅
𝜇

𝐷𝑡2
+ 𝛼(𝜇)

𝐷Ψ𝑆𝐼𝑅
𝜇

𝐷𝑡
= 𝑅𝜈𝜌𝜎

𝜇
𝑈𝑆𝐼𝑅
𝜈 𝑈𝑆𝐼𝑅

𝜌
Ψ𝑆𝐼𝑅
𝜎 .

 

(ii) For Finslerian Geometry (Berwald Type): 

In a similar way to equations [94-98], we can obtain the following equations: 

�̂�𝑆

�̂�𝑡
= 0,

�̂�𝐼

�̂�𝑡
= 𝛼‾𝐼,

 

and 

�̂�𝑅

�̂�𝑡
= 0. 

Equations [100-102] are obtained by taking the action of the following Largangian: 

𝐿 = 𝑔𝜇𝜈�̂�𝑆𝐼𝑅
𝜇 �̂�Ψ̂𝑆𝐼𝑅

𝜈

𝐷𝑡
+ 𝛼(𝜇)Ψ̂𝜈𝑆𝐼𝑅�̂�𝑆𝐼𝑅

𝜈 ,

𝜇, 𝜈 = 1,2,3.

 

We also can find the corresponding deviation equations to become: 

�̂�2Ψ̂𝑆𝐼𝑅
𝜇

�̂�𝑡2
+ 𝛼(𝜇)

�̂�Ψ̂𝑆𝐼𝑅
𝜇

�̂�𝑡
= 𝐵𝜈𝜌𝜎

𝜇
𝑈𝑆𝐼𝑅
𝜈 𝑈𝑆𝐼𝑅

𝜌
Ψ̂𝜎

 

For a complete description of this model will be examined in our future work. 

7. Discussion and Concluding Re- marks- The paper deals with geometrizing some epidemic models using 

their corresponding path equations. Also, we have obtained their corresponding path deviation equations 

from one single Lagrangian for different types of geometries based under a positive definite metric with 

constant affine connections and a negative curvature. In this study we have begun with a geometrized 

version of the concept of allometry, to examine epidemic curves by finding their path and path deviation 

equations. The paper has also opened the window to impose non conventional types of geometries in future 

work to describe more complex version of SI or SIR models . One of good results is increasing the dimensions 

may describe other additive factors different from SIR-model to be geometrically expressed e.g. susceptive-

exposed-infectiverecovered model (SEIR) which can be expressed in 4-dimensional manifold with negative 

curvature . 
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This study can be extended to obtain such an appropriate version of epidemic curves functioning on long 

time periods without imposing too many parameters as in case of the traditional regression analysis. It is not 

the optimal case to get an exact form of epidemic curve, but it is a trend to apply such a concept of 

geometrization to understand nature. 

Finally, in our future work we will be in need to develop these geometries to include some new parameters 

affecting the SI-model such as transmission rate [15]. Also, SIR model can also be extended to include some 

interactions like population fertility or immigration parameters to be considered in demographic using partial 

differential equations of McKendrick- von Forester [16]. Accordingly, the above mentioned new parameters 

in both SI and SIR models, may be defined geometrically in terms of non linear connections of the 

Finslerianapproach . 

8. Appendix 

9. Derivation of Geodesic and geodesic deviation us- ing the BazanskiLagrangian 

Let 

𝐿 = 𝑔𝜇𝜈𝑈
𝛼
𝐷Ψ𝜈

𝐷𝑡
 

i.e. 

𝐿 = 𝑔𝜇𝜈𝑈
𝛼 (

𝑑Ψ𝜈

𝑑𝑡
+ Γ𝜇𝜈

𝛼 𝑈𝜇Ψ𝜈) 

where 𝑈𝛼 =
𝑑𝑥𝛼

𝑑𝜏
 is defined to a tangent vector of a curve whose parameter is 𝜏. 

10. (i) Geodesic Equation- Applying the action principle by taking the variation on (𝐴. 1) with respect to Ψ̇𝜎 

to get 

∂𝐿

∂Ψ̇𝜎
= 𝑔𝜇𝜈𝛿𝜎

𝜈𝑈𝜇 ,

∂𝐿

∂Ψ̇𝜎
= 𝑈𝜎 ,

𝑑

𝑑𝜏

∂𝐿

∂Ψ̇𝜎
= �̇�𝜎 .

 

Also, one obtains 

∂𝐿

∂Ψ𝜎
= 𝑔𝜇𝜈Γ𝛼𝛽

𝜈 𝛿𝜎
𝛼𝑈𝛽𝑈𝜇

= 𝑔𝜇𝜈Γ𝜎𝛽
𝜈 𝑈𝛽𝑈𝜈.
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Thus the Euler-Lagrange equation becomes 

𝑑

𝑑𝜏

∂𝐿

∂Ψ̇𝜎
−

∂𝐿

∂Ψ𝜎
= 0 

which can be written in the following form 

𝑑𝑈𝜎
𝑑𝜏

− Γ𝜎𝛽
𝜈 𝑈𝛽𝑈𝜈 = 0 

i.e. 

𝐷𝑈𝜎
𝐷𝜏

= 0 

which becomes 

𝐷𝑔𝜎𝜇𝑈
𝜇

𝐷𝜏
= 0,

𝑈𝜇
𝐷𝑔𝜇𝜈

𝐷𝜏
+ 𝑔𝜎𝜇

𝐷𝑈𝜇

𝐷𝜏
= 0.

 

It is well known that in Riemannian geometry, the covariant derivative of 𝑔𝜇𝜈 vanishes identically. 

Thus, one obtains 

𝑔𝜎𝜇
𝐷𝑈𝜇

𝐷𝜏
= 0. 

Multiplying both sides by 𝑔𝜖𝜎, one can find 

𝑔𝜖𝜎𝑔𝜎𝜇
𝐷𝑈𝜇

𝐷𝜏
= 0,

𝛿𝑚𝑢
𝜖

𝐷𝑈𝜇

𝐷𝜏
= 0,

𝐷𝑈𝜇

𝐷𝜏
= 0,

 

which is the well known equation of geodesic. 

11. (ii) Geodesic Deviation Equation- The Lagrangian (A.1) can be written as 

𝐿 = 𝑈𝜇
𝐷𝑔𝜇𝜈Ψ

𝜈

𝐷𝜏
 

Consequently, by taking the variation on (𝐴. 1) with respect to 𝑈𝜎 to get 
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∂𝐿

∂𝑈𝜎
= Ψ̇𝜎 − Γ𝜎𝜆

𝜌
Ψ𝜌𝑈

𝜆 − Γ𝜇𝜎
𝜌
𝑈𝜇Ψ𝜌

=
𝐷Ψ𝜎

𝐷𝜏
− Γ𝜇𝜎

𝜌
𝑈𝜇Ψ𝜌,

𝑑

𝑑𝜏

∂𝐿

∂𝑈𝜎
=

𝑑

𝑑𝜏

𝐷Ψ𝜎

𝐷𝜏
− Γ𝜇𝜎,𝜈

𝜌
Ψ𝜌𝑈

𝜈𝑈𝜇

−Γ𝜇𝜎
𝜌 𝑑𝑈𝜇

𝑑𝜏
Ψ𝜌 − Γ𝜇𝜎

𝜌 𝑑Ψ𝜎

𝑑𝜏
𝑈𝜇 .

 

Also, it is well known that 

𝐷Ψ𝜌

𝐷𝜏
=
𝑑Ψ𝜌

𝑑𝜏
− Γ𝜌𝛿

𝜆 𝑈𝛿Ψ𝜌, 

and from geodesic equation 

𝑑𝑈𝜇

𝑑𝜏
= −Γ𝜌𝛿

𝜇
𝑈𝜌𝑈𝛿 

(A.7) becomes 

𝑑

𝑑𝜏

∂𝐿

∂𝑈𝜎
=

𝑑

𝑑𝜏

𝐷Ψ𝜎

𝐷𝜏
− Γ𝜇𝜎,𝜈

𝜌
𝑈𝜈𝑈𝜇Ψ𝜌

−Γ𝜌𝜇𝜎 (
𝑑𝑈𝜇

𝑑𝜏
Γ𝜆𝛿
𝜇
𝑈𝜆𝑈𝛿)Ψ𝜌

−Γ𝜇𝜎
𝜌
(
𝐷Ψ𝜌

𝐷𝜏
+ Γ𝜌𝛿

𝜆 Ψ𝜆𝑈
𝛿)𝑈𝜇

 

and 

∂𝐿

∂𝑥𝜎
= −Γ𝜇𝜆,𝜎

𝜌
𝑈𝜇𝑈𝜆Ψ𝜌 

Thus, the Euler-Lagrange equation becomes 

𝑑

𝑑𝜏

∂𝐿

∂𝑈𝜎
−

∂𝐿

∂𝑥𝜎
= 0 

which gives 

𝑑

𝑑𝜏

𝐷Ψ𝜎

𝐷𝜏
− Γ𝜇𝜎

𝜌 𝐷Ψ𝜌

𝐷𝜏
𝑈𝜇 − Γ𝜇𝜎,𝜈

𝜌
Ψ𝜌𝑈

𝜇𝑈𝜈

− Γ𝜇𝜎
𝜌
Γ𝜌𝛿
𝜆 Ψ𝜆𝑈

𝜇𝑈𝛿Ψ𝜆𝑈
𝜇𝑈𝛿

+ Γ𝜇𝜎
𝜌
Γ𝜆𝛿
𝜇
Ψ𝜌𝑈

𝜆𝑈𝛿Ψ𝜆𝑈
𝜇𝑈𝛿 − Γ𝜌𝜇𝜎

𝐷𝑈𝜇

𝐷𝜏
Ψ𝜌

+ Γ𝜇𝜆,𝜎
𝜌

Ψ𝜌𝑈
𝜆𝑈𝜇 = 0.
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Consequently, the above equation reduces to 

𝑑

𝑑𝜏

𝐷Ψ𝜎

𝐷𝜏
− Γ𝜇𝜎

𝜌 𝐷Ψ𝜌

𝐷𝜏
𝑈𝜇 − Γ𝜇𝜎,𝜈

𝜌
Ψ𝜌𝑈

𝜇𝑈𝜈

+ Γ𝜇𝜆,𝜎
𝜌

Ψ𝜌𝑈
𝜆𝑈𝜇 + Γ𝜇𝜎

𝜌
Γ𝜆𝛿
𝜇
Ψ𝜌𝑈

𝜆𝑈𝛿Ψ𝜆𝑈
𝜇𝑈𝛿

−Γ𝜇𝜎,𝜈
𝜌

Ψ𝜌𝑈
𝜇𝑈𝜈 − Γ𝜇𝜎

𝜌
Γ𝜌𝛿
𝜆 Ψ𝜆𝑈

𝜇𝑈𝛿Ψ𝜆𝑈
𝜇𝑈𝛿 = 0.

 

Thus, after some manipulations, one obtains the geodesic deviation equations in following way 

𝐷2Ψ𝛼

𝐷𝜏2
= 𝑅𝜈𝜌𝜇

𝛼 𝑈𝜇𝑈𝜈Ψ𝜌 
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