

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0)

 Shodhshauryam, International Scientific Refereed Research Journal
Available online at : www.shisrrj.com

© 2024 SHISRRJ | Volume 7 | Issue 2

 ISSN : 2581-6306 doi : https://doi.org/10.32628/SHISRRJ

225

A* Star Algorithm Visualization
Dr. K. Shanmugam1, D. Durgabhavani2

1Assistant Professor, Department of MCA, Annamacharya Institute of Technology & Sciences, Tirupati, Andhra Pradesh, India

2Post Graduate, Department of MCA, Annamacharya Institute of Technology & Sciences, Tirupati, Andhra Pradesh, India

Article Info

Article History

Received : 25 March 2024

Published : 05 April 2024

Publication Issue :

March-April-2024

Volume 7, Issue 2

Page Number : 225-231

ABSTRACT

By natural phenomena, offer innovative approaches for optimization and

problem-solving in various domains. The implementation encompasses

features such as color-coded spot states (open, closed, path, etc.) and user-

driven interaction through mouse clicks and key presses. The key

commitments of this extend incorporate the visualization of the A*

algorithm's conduct, which helps clients in understanding how the

calculation navigates through impediments and makes

choices. Additionally, the project demonstrates the significance of heuristic

functions in guiding the algorithm's search efficiently. By presenting

various scenarios of pathfinding problems and their corresponding

solutions, the project showcases the algorithm's ability to find optimal paths

while avoiding obstacles. Algorithms, fundamental to computer science and

information processing, are step-by-step procedures or sets of rules for

solving problems. They are crucial in various fields including mathematics,

computer science, engineering, and more recently, in machine learning and

artificial intelligence. The abstraction of algorithms allows for the

generalization of problem-solving approaches, making them applicable

across diverse domains. Algorithms can be classified based on their design

paradigms as greedy methodologies, adaptive programming, divide and

conquer, and others. nation paradigm possesses its own negatives plus

drawbacks and unveils an individual strategy for mitigating problems.

Furthermore, algorithms can be categorized based on their complexity,

measured in terms of time and space requirements, which helps in

evaluating their efficiency and scalability.

Keywords : Heuristic Search, Pathfinding, Graph Search, Admissible

Heuristic, Open List, Closed List, Manhattan Distance, Optimality,

Computational Complexity.

Volume 7, Issue 2, March-April-2024 | www.shisrrj.com

Dr. K. Shanmugam et al Sh Int S Ref Res J, March-April-2024, 7 (2) : 225-231

226

I. INTRODUCTION

Understanding algorithms involves analysing their

correctness, efficiency, and optimality. Correctness

ensures that an algorithm produces the desired

output for all possible inputs while efficiency

concern the resources consumed during execution,

typically measured in terms of time and space

complexity. Optimization techniques aim to

improve efficiency, often by refining algorithms or

introducing heuristics with the advent of big data

and complex computational problems, the study and

development of algorithms have become

increasingly important. Parallel and distributed

algorithms enable efficient processing of large-scale

datasets, while randomized algorithms provide

probabilistic Algorithms enable the automation of

tasks, resulting in faster and more efficient process

data and information. Well-designed algorithms

produce consistent and reliable results, reducing

error Calculations can handle huge datasets and

complex issues, making them appropriate for

applicatirequirin tall adaptability. Once grew,

equations can be repurposed over various endeavors

and applications, sparing labor and time in the

manner of improvement. Calculations offer

methodical ways to solve issues by dissecting tricky

problems into digestible chunks.

Due to the fact that programs render it viable for

developers to develop novel materials, applications,

and solutions in an assortment of zones, algorithms

boost innovative thinking. Some algorithms can be

complex to understand, implement, and optimize,

requiring specialized knowledge and expertise

particularly in machine learning applications, robots

may inherit biases from the data they are trained on,

yielding unfair or unfavorable outcomes. Certain

algorithms may require significant computational

resources, such processing power and memory,

leading to scalability challenges. Machine learning

simulations may overfit to the supplied data,

culminating in a dismal generalization to subtle data.

These can render machine learning tricky to

interpret as a function of internal mechanics and

how decisions are made. Algorithms, especially

those used in security applications, may be

susceptible to exploitation and attacks, leading to

breaches and compromises in system integrity and

resource intensiveness benefits of algorithms while

mitigating their drawbacks, it is essential to adopt

responsible and transparent practice in algorithm

design, implementation, and evaluation across.

II. LITERATURE REVIEW

Examining the literature on A* Algorithm:

The heuristic search algorithm A* combines the

rewards of greedy best-first search and uniform-cost

search . Using an evaluation function that factors

into thought both the cost to arrive at a node and an

estimate of the cost to achieve the goal from that

node, this smartly negotiates a search space.

It steers the search towards the most promising

paths first via predicting the cost from the current

node to the impartial utilizing a heuristic function.

The procedure monitors the status of two lists: a

closed list without nodes still are currently being

rated and an open list with nodes that require

further attention to be looked at.

It guarantees optimality under certain conditions,

such as having an admissible heuristic (never

overestimates actual costs) and a finite search space.

An Overview of Machine Learning:

Machine learning is a subfield of cognitive science

(AI) which relies to build statistical models and

algorithms that permit computers learn and get

Volume 7, Issue 2, March-April-2024 | www.shisrrj.com

Dr. K. Shanmugam et al Sh Int S Ref Res J, March-April-2024, 7 (2) : 225-231

227

quicker at stuff without wanting to be deliberately

programmed. It revolves around the idea of

providing machines with the ability to learn from

data, identify patterns, and make decisions or

predictions based on that learning.

Talks about feature selection technics and how well

they work to A* algorithm

Include choice strategies within the setting of

machine learning allude to strategies utilized to

select the highlights from a dataset that are most

germane and educational. These strategies look for

to extend interpretability, decrease overfitting, and

boost model performance. However, when it comes

to the A* algorithm, which is primarily used for

pathfinding and graph traversal, feature selection as

traditionally understood in machine learning may

not directly apply. Instead, let's discuss how certain

concepts related to feature selection can be

beneficial in optimizing the A* algorithm's

resolution and efficiency.

Assessment of earlier research on the effectiveness

of different classifiers in A* algorithm analysis

Algorithms involve analysing their correctness,

efficiency, and optimality. Correctness ensures that

an algorithm produces the desired output for all

possible inputs, while efficiency concerns the

resources consumed during execution, typically

measured in terms of time and space complexity.

Optimization techniques aim to improve efficiency,

often by refining algorithms or introducing

heuristics with the advent of big data and complex

computational problems, the study and

development of algorithms have become

increasingly important. Parallel and distributed

algorithms enable efficient processing of large-scale

datasets, while randomized algorithms provide

probable.

III METHODOLOGY

Approach: The A* algorithm's methodology

includes a methodical process that combines data on

the cost of reaching a node and an optimal path in a

graph or search space to find the an estimate of the

expense from that node to the target. Here's a

concise explanation of the methodology.

The open list and the closed list comprise two

records that have to be loaded prior to the A*

calculation commences. Whilst the hubs on the

closed list are currently being assessed ones on the

open list remain to be vetted. Additionally, the

algorithm assigns a cost to each node based on a

combination of the actual cost to reach that node

(denoted as g(n)) and an estimated cost to reach the

goal from that node (denoted as h(n)). The whole

projected expense via a node n to the objective is

shown as f(n) is equal to g(n) plus h(n).

Implementation: To create graphical user interfaces

(GUIs), one can utilize the standard Python package

Tkinter. With reference to the A* algorithm,

A user-friendly interface that allows users to enter

parameters for the A* algorithm, like the start and

target nodes, can be created with tkinter. GUIs give

users a simple method to work with algorithms and

see the results visually.The time module in Python

is used for various time-related tasks, including

measuring the execution time of code. When

integrating the algorithm with tkinter, the time

module can be employed to measure how long it

takes for the algorithm to find the optimal path

between the specified start and goal nodes. This

information is crucial for performance evaluation

and optimization of the algorithm. The functools

Volume 7, Issue 2, March-April-2024 | www.shisrrj.com

Dr. K. Shanmugam et al Sh Int S Ref Res J, March-April-2024, 7 (2) : 225-231

228

module in Python provides tools for working with

functions and callable objects. When implementing

the algorithm, function tools can be utilized for

function manipulation tasks. For example, functools.

partial() can be used to create specialized versions of

functions with predefined arguments, which is

useful for parameterized configurations of the

algorithm. Additionally, functools. Wraps() can

preserve metadata and improve the readability of

functions, enhancing code maintainability.

Characteristics:

A* is total, meaning it'll discover a arrangement on

the off chance that one exists, given the heuristic

work is permissible. When the heuristic work is

both acceptable and steady, ensures optimality by

finding the most brief way.

Admissible heuristics never overestimate actual

costs, allowing this to avoid exploring unnecessary

paths. This is widely used in applications such as

pathfinding in games, robotics, and route planning.

It can handle various types of graphs and search

spaces, making it versatile for different problem

domains. Then requires more memory compared to

some other algorithms but balances this with

efficient exploration and optimal pathfinding

capabilities.

Data pre-processing:

Define the graph or grid structure representing

nodes and connections. Assign costs to edges or cells

based on the problem's requirements. Paint a

heuristic function the fact that reckons risk

associated with attaining the goal in mind. Set up

initial conditions: start and goal nodes, open and

closed sets. Compute initial costs for each node

considering and Iterate through the main loop,

selecting nodes with the lowest value. Expand

selected nodes, updating costs and parent pointers

for neighbours.

Ensure consistency of explored nodes in both open

and closed sets. When the anticipated node is

reached or the open set entails no more nodes,

terminate. Reconstruct the optimal path from the

start to the goal node using parent pointers.

An Explanation of Machine Learning Classifiers:

Machine learning classifiers are algorithms that

learn patterns and relationships from labelled

training data to classify or categorize new, unseen

data into predefined classes or categories. These

classifiers are a fundamental component of

supervised learning in machine learning. The A*

algorithm, although primarily known as a heuristic

search algorithm for pathfinding, is not typically

used as a machine learning classifier. It's designed

for solving problems related to finding the shortest

path in graphs or search spaces by intelligently

exploring possible paths based on heuristic estimates.

IV EXPERIMENTAL SETUP

Tkinter: Tkinter is a Python package used to create

graphical user interfaces. It offers a collection of

Python toolkit bindings for the Tk GUI. Tkinter

runs on Linux, macOS, and Windows and is cross-

platform. Tkinter arranges GUI components into

widgets .Common widgets include buttons, labels,

text boxes, and canvas. Tkinter follows an event-

driven programming paradigm. Users interact with

GUI elements, triggering events. Event handlers, or

call-backs, respond to these events. Tkinter offers

customization options for GUI appearance and

behaviour. It is well-documented and widely used,

making it suitable for both beginners and

experienced developers.

Volume 7, Issue 2, March-April-2024 | www.shisrrj.com

Dr. K. Shanmugam et al Sh Int S Ref Res J, March-April-2024, 7 (2) : 225-231

229

Functools:

Functools is a Python module providing higher-

order functions and operations on callable objects. It

includes utilities for creating and manipulating

functions and callable objects. This module contains

various tools that are particularly useful for

functional programming. Some of its key features

include partial, reduce, wraps, lru_cache, and

total_ordering. functools enhances the functionality

of functions and makes them more versatile and

powerful. It enables developers to create functions

with predefined arguments using partial and apply

functions cumulatively to a sequence using reduce.

It also provides decorators like wraps for preserving

function metadata and lru_cache for memoization,

improving performance. The module encourages

functional programming paradigms and enhances

the readability and maintainability of Python code.

Time:

In machine learning, the time library in Python is

essential for measuring and optimizing the

performance of algorithms and models. It provides

functions for tracking the execution time of code

segments, helping developers analyze and improve

efficiency. Timing operations using time library aids

in benchmarking different machine learning

algorithms and tuning hyperparameters. By

recording the duration of model training and

evaluation, it facilitates comparison between

different approaches and optimizations.

Additionally, time-based metrics help in

understanding the scalability and resource

requirements of machine learning systems.

Integrating time library enables precise profiling of

complex workflows, identifying bottlenecks and

areas for optimization. Efficient time management is

crucial for real-time applications, where latency and

response times are critical factors. The time library's

versatility and ease of use make it a valuable tool for

monitoring and optimizing machine learning

pipelines.

V ANALYSIS

Nodes:

Shortest path:

A shortest path algorithm calculates the most

efficient route between two points in a graph,

minimizing total distance or cost. Dijkstra's style,

Bell man-Ford algorithm, and the technique known

Volume 7, Issue 2, March-April-2024 | www.shisrrj.com

Dr. K. Shanmugam et al Sh Int S Ref Res J, March-April-2024, 7 (2) : 225-231

230

as A* are illustrations of common shortest path

algorithms. each with specific applications and

considerations .These algorithms can handle

different types of graphs, such as directed,

undirected, weighted, and unweighted graphs.

VI DISCUSSIONS

Interpretation of Results:

spotting the most effective route everywhere a

graph or search space from starting node to an

ultimate node is one of the most important results of

the A* algorithm. judging by the cost function the

algorithm chosen, this path reveals the most

prudent tactics. The provides the total cost or

distance of the optimal path, which is the sum of

the costs associated with traversing the edges or

nodes along the path. This cost is calculated based

on the heuristic function and edge weights (if

applicable).

A* algorithm Implications:

A* algorithm revolutionizes pathfinding by

efficiently finding the shortest path in graphs or

grids. Widely applied in gaming for NPC navigation

and real-time obstacle avoidance. Vital in robotics

for robot motion planning, ensuring efficient and

safe movement. Integral to navigation systems,

providing optimal routes in GPS devices and

mapping apps. Used in network routing protocols

for packet forwarding optimization in computer

networks. Essential in automated planning systems

for resource allocation and task scheduling

optimization. Employed in operations research for

solving various optimization problems effectively.

Utilized in medical imaging for tasks like image

registration and segmentation. Applied in natural

language processing for parsing and machine

translation. A* algorithm's versatility makes it a

cornerstone in diverse fields requiring efficient

pathfinding and optimization.

Benefits of A* Algorithm:

In so far as particular demands satisfy themselves

(such adopting a proper heuristic), A* assures

discovering the quickest route linking the origin

and target hubs as well. When an adequate heuristic

is implemented, it is frequently more productive

than unsophisticated look operations like Dijkstra's

algorithm or breadth-first search. This can be

adapted to various problem domains and grid

layouts, making it

heuristic is utilized. This will be adjusted to

different issue spaces and lattice formats, making it

flexible for diverse applications. Given sufficient

time and memory, A* is ensured to discover a

arrangement in the event that one exists, making it

a total look calculation.

Drawbacks of A* Algorithm:

A* intensely depends on the precision of the

heuristic work. In case the heuristic isn't acceptable

(never overestimates the genuine fetched) or

conflicting, A* may not discover the ideal

arrangement. (never overestimates the true cost) or

inconsistent, A* may not find the optimal solution.

A* may consume significant memory, especially in

scenarios with large search spaces, as it needs to

store information about explored nodes and paths.

Implementing A* can be more complex compared to

simpler algorithms like breadth-first search or

Dijkstra's algorithm, especially when dealing with

intricate heuristic functions or complex grid

layouts.

VII CONCLUSION

The "A* Pathfinding Algorithm Visualization using

Pygmy project has successfully addressed the need

Volume 7, Issue 2, March-April-2024 | www.shisrrj.com

Dr. K. Shanmugam et al Sh Int S Ref Res J, March-April-2024, 7 (2) : 225-231

231

for a user-friendly and educational tool to

understand the intricacies of the algorithm. By

combining algorithmic implementation with

interactive visualization, the project has achieved its

objectives of enhancing comprehension and

fostering engagement. Through the interactive

graphical interface, users have been able to

intuitively set up scenarios, observe the algorithm's

decision-making process, and witness the algorithm

adapt to obstacles in real-time. The color-coded spot

states, dynamic heuristic display, and step-by-step

mode have significantly contributed to users' ability

to grasp the algorithm's behaviour and the role of

heuristic functions. The project's contribution to

education is notable. It serves as an effective

teaching aid, catering to learners at different levels

of expertise. Novices can gain a foundational

understanding of pathfinding concepts, while more

experienced users can delve into advanced topics

like heuristic optimization. The project's

educational potential has been further extended

through its compatibility and cross-platform

support, making it accessible to a wide audience. In

conclusion, the "A* Pathfinding Algorithm

Visualization using Pygmy" project stands as a

testament to the synergy between algorithmic

understanding and graphical representation. It

empowers users to explore, learn, and appreciate the

complexities of pathfinding algorithms, ultimately

bridging the gap between theory and practical

application in conclusion, algorithms are essential

tools in computer science and are continually

evolving to address new challenges and

opportunities in various domains. Understanding

and analyzing algorithms enable us to develop more

efficient solutions, optimize processes, and innovate

in fields ranging from software development to

artificial intelligence. As technology advances,

algorithms will remain at the forefront, shaping the

future of computing and driving progress in

countless areas of human.

II. REFERENCES

[1]. Citations: Raphael, B., Nilsson, N. J., and Hart,

P. E. (1968). An Official Foundation for the

Heuristic Calculation of the Lowest Cost

Routes. IEEE Transactions on Cybernetics and

Systems Science, 4(2), 100–107.

[2]. Russell, S., & Norvig, P. (2009). Artificial

Intelligence: A Modern Approach (3rd ed.).

Prentice Hall. (Chapter 3 covers A* algorithm

extensively.)

[3]. Cormen,T. H., Leiserson, C. E., Rivest, R. L.,

& Stein, C. (2009). Introduction to Algorithms

(3rd ed.). MIT Press. (Chapter 4 includes

discussions on A* algorithm.)

[4]. Nilsson, N. J. (1982). Principles of Artificial

Intelligence. Tioga Publishing Company.

(Chapter 10 provides insights into A*

algorithm.)

[5]. Laurikkala, J. (2000). A* Algorithm for

Learning in Feedforward Neural Networks.

Neurocomputing, 32-33, 413-419. Pearl, J.

(1984).

[6]. Heuristics: Intelligent Search Techniques for

Resolving Computer Issues. Wesley-Adobe.

(The application of the A* algorithm is

covered in Chapter 4.) R. E. Korf (1985).

Depth-First Iterative-Deepening: An Ideal

Acceptable Tree Search Method. 27(1),

Artificial Intelligence, 97-109.

