A Multivariate Analysis Model for Predicting Sales Performance Based on Inventory and Delivery Metrics

Authors(3) :-Opeyemi Morenike Filani, John Oluwaseun Olajide, Grace Omotunde Osho

Sales performance in competitive markets is significantly influenced by underlying supply chain operations, particularly inventory levels and delivery performance. For businesses to gain actionable insights into future sales outcomes, integrating predictive analytics grounded in multivariate statistical methods is increasingly critical. This paper presents a comprehensive literature-based model that leverages multivariate analysis—including regression, principal component analysis (PCA), and structural equation modeling (SEM)—to forecast sales performance using inventory turnover, stockout frequency, lead time variability, and order fulfillment rates as key predictors. Drawing upon over 100 scholarly sources, the study proposes a conceptual framework that links logistics KPIs with sales outcomes. The model is designed to inform strategic decisions in retail and manufacturing sectors where demand-supply synchronization is essential. The paper includes an in-depth introduction and literature review, followed by model development, discussion, and policy recommendations. It offers a foundation for businesses aiming to deploy data-driven strategies for improving sales forecasting accuracy in dynamic supply environments.

Authors and Affiliations

Opeyemi Morenike Filani
Proburg Ltd, Lagos, Nigeria
John Oluwaseun Olajide
Lipton, Nigeria
Grace Omotunde Osho
Guinness Nig. Plc, Nigeria

Sales Performance, Inventory Turnover, Delivery Metrics, Multivariate Analysis, Predictive Modeling, Supply Chain Analytics

  1. E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Integrating AI, blockchain, and big data to strengthen healthcare data security, privacy, and patient outcomes,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 1, pp. 124–129, 2022.
  2. J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, O. A. Agboola, E. Ogbuefi, and S. Owoade, “Systematic review of advanced data governance strategies for securing cloud-based data warehouses and pipelines,” Iconic Research and Engineering Journals, vol. 6, no. 1, pp. 784–794, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708318
  3. B. Brunaud, J. M. Laínez-Aguirre, J. M. Pinto, and I. E. Grossmann, “Inventory policies and safety stock optimization for supply chain planning,” AIChE Journal, vol. 65, no. 1, pp. 99–112, Jan. 2019, doi: 10.1002/AIC.16421.
  4. Ajiga and D. I, “Strategic framework for leveraging artificial intelligence to improve financial reporting accuracy and restore public trust,” I. (2021). Strategic framework for leveraging artificial intelligence to improve financial reporting accuracy and restore public trust. International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2021), 2021.
  5. Esan, U. O. J., O. O. T., O. O., G. O. Etukudoh, and E. A, “Procurement 4.0: Revolutionizing supplier relationships through blockchain, AI, and automation: A comprehensive framework,” J., Uzozie, O. T., Onaghinor, O., Osho, G. O., & Etukudoh, E. A. (2022). Procurement 4.0: Revolutionizing supplier relationships through blockchain, AI, and automation: A comprehensive framework. Journal of Frontiers in Multidisciplinary Research, vol. 2022), 2022.
  6. Esan, U. O. J., O. O. T., O. O., G. O. Etukudoh, and E. A, “Procurement 4.0: Revolutionizing supplier relationships through blockchain, AI, and automation: A comprehensive framework,” J., Uzozie, O. T., Onaghinor, O., Osho, G. O., & Etukudoh, E. A. (2022). Procurement 4.0: Revolutionizing supplier relationships through blockchain, AI, and automation: A comprehensive framework. Journal of Frontiers in Multidisciplinary Research, vol. 2022), 2022.
  7. Adelusi, O. B. S., K.-A. D., M. M. C., A. Y. Ikhalea, and N, “A deep learning approach to predicting diabetes mellitus using electronic health records,” S., Osamika, D., Kelvin-Agwu, M. C., Mustapha, A. Y., & Ikhalea, N. (2022). A deep learning approach to predicting diabetes mellitus using electronic health records. Journal of Frontiers in Multidisciplinary Research, vol. 2022), 2022.
  8. T. Sustrova, “A Suitable Artificial Intelligence Model for Inventory Level Optimization,” Trends Economics and Management, vol. 10, no. 25, p. 48, May 2016, doi: 10.13164/TRENDS.2016.25.48.
  9. A. Y. Onifade, J. C. Ogeawuchi, A. A. Abayomi, O. A. Agboola, and O. O. George, “A Conceptual Framework for Integrating Customer Intelligence into Regional Market Expansion Strategies,” Iconic Research and Engineering Journals, vol. 5, no. 2, pp. 189–205, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708471
  10. A. Roozbeh Nia, A. Awasthi, and N. Bhuiyan, “Industry 4.0 and demand forecasting of the energy supply chain: A literature review,” Comput Ind Eng, vol. 154, Apr. 2021, doi: 10.1016/j.cie.2021.107128.
  11. H. D. Perez, C. D. Hubbs, C. Li, and I. E. Grossmann, “Algorithmic approaches to inventory management optimization,” Processes, vol. 9, no. 1, pp. 1–17, Jan. 2021, doi: 10.3390/PR9010102.
  12. Y. Tadayonrad and A. B. Ndiaye, “A Dynamic Combination of Theta Method and ATA: Validating on a Real Business Case †,” Engineering Proceedings, vol. 18, no. 1, 2022, doi: 10.3390/ENGPROC2022018025.
  13. A. A. Syntetos, Z. Babai, J. E. Boylan, S. Kolassa, and K. Nikolopoulos, “Supply chain forecasting: Theory, practice, their gap and the future,” Eur J Oper Res, vol. 252, no. 1, pp. 1–26, Jul. 2016, doi: 10.1016/j.ejor.2015.11.010.
  14. F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Advances in Integrated Geographic Information Systems and AI Surveillance for Real-Time Transportation Threat Monitoring,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 01, pp. 130–139, 2022.
  15. O. J. Esan, O. T. Uzozie, O. Onaghinor, G. O. Osho, and E. A. Etukudoh, “Procurement 4.0: Revolutionizing Supplier Relationships through Blockchain, AI, and Automation: A Comprehensive Framework,” Journal Of Frontiers In Multidisciplinary Research, vol. 3, no. 1, pp. 117–123, 2022.
  16. A. Y. Onifade, J. C. Ogeawuchi, A. A. Abayomi, and O. Aderemi, “A Conceptual Framework for Integrating AI Adoption Metrics into B2B Marketing Decision Systems,” International Journal of Management and Organizational Research, vol. 1, no. 01, pp. 237–248, 2022.
  17. J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, and O. A. Agboola, “Systematic Review of Business Process Optimization Techniques Using Data Analytics in Small and Medium Enterprises,” IRE Journals, vol. 5, no. 4, pp. 251–259, 2021.
  18. T. Falatouri, F. Darbanian, P. Brandtner, and C. Udokwu, “Predictive Analytics for Demand Forecasting - A Comparison of SARIMA and LSTM in Retail SCM,” Procedia Comput Sci, vol. 200, pp. 993–1003, 2022, doi: 10.1016/j.procs.2022.01.298.
  19. H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model using LSTM network for demand forecasting,” Comput Ind Eng, vol. 143, May 2020, doi: 10.1016/j.cie.2020.106435.
  20. B. C. Ubamadu, D. Bihani, A. I. Daraojimba, G. O. Osho, and J. O. Omisola, “Optimizing Smart Contract Development: A Practical Model for Gasless Transactions via Facial Recognition in Blockchain,” Unknown Journal, 2022.
  21. O. Ogunwoye, C. Onukwulu, J. Sam-bulya, M. O. Joel, and O. Achimie, “Optimizing Supplier Relationship Management for Energy Supply Chain,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  22. D. C. Anaba, M. O. Agho, E. C. Onukwulu, and P. I. Egbumokei, “Conceptual Model for Integrating Carbon Footprint Reduction and Sustainable Procurement in Offshore Energy Operations,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 4, 2022.
  23. S. L. Zubaidi et al., “Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study,” Water (Switzerland), vol. 12, no. 7, Jul. 2020, doi: 10.3390/W12071885.
  24. E. C. Onukwulu, I. A. I. N.-D. Dienagha, W. N. Digitemie, and P. I. Egwumokei, “Advances in Digital Twin Technology for Monitoring Energy Supply Chain Operations,” Iconic Research and Engineering Journals, vol. 5, no. 12, pp. 372–400, 2022.
  25. G. Fredson, B. Adebisi, O. B. Ayorinde, E. C. Onukwulu, and O. Adediwin, “Enhancing Procurement Efficiency through Business Process Re-Engineering: Cutting-Edge Approaches in the Energy Industry,” International Journal of Social Science Exceptional Research, vol. 1, no. 1, pp. 38–54, 2022.
  26. T. Qu, J. H. Zhang, F. T. S. Chan, R. S. Srivastava, M. K. Tiwari, and W. Y. Park, “Demand prediction and price optimization for semi-luxury supermarket segment,” Comput Ind Eng, vol. 113, pp. 91–102, Nov. 2017, doi: 10.1016/j.cie.2017.09.004.
  27. E. C. Onukwulu, M. O. Agho, and N. L. Eyo-Udo, “Advances in Green Logistics Integration for Sustainability in Energy Supply Chains,” World Journal of Advanced Science and Technology, vol. 2, no. 1, pp. 47–68, 2022.
  28. J. N. C. Gonçalves, M. Sameiro Carvalho, and P. Cortez, “Operations research models and methods for safety stock determination: A review,” Operations Research Perspectives, vol. 7, Jan. 2020, doi: 10.1016/j.orp.2020.100164.
  29. E. C. Onukwulu, I. N. Dienagha, W. N. Digitemie, and P. I. Egbumokei, “Predictive Analytics for Mitigating Supply Chain Disruptions in Energy Operations,” Iconic Research and Engineering Journals, vol. 5, no. 3, pp. 256–282, 2021.
  30. G. O. Osho, J. O. Omisola, and J. O. Shiyanbola, “An Integrated AI-Power BI Model for Real-Time Supply Chain Visibility and Forecasting: A Data-Intelligence Approach to Operational Excellence,” Unknown Journal, 2020.
  31. Y. F. Y. W. L Chen, “Big data driven sustainable development of FMCG industry,” J Clean Prod, vol. 273, 2020.
  32. M. S. R Verma, “Demand forecasting in FMCG industry using machine learning techniques,” Int J Innov Technol Explor Eng, vol. 10, no. 5, pp. 104–110, 2021.
  33. J. Barros, P. Cortez, and M. S. Carvalho, “A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process,” Operations Research Perspectives, vol. 8, Jan. 2021, doi: 10.1016/j.orp.2021.100192.
  34. A. T. Ofoedu, J. E. Ozor, O. Sofoluwe, and D. D. Jambol, “Stakeholder Alignment Framework for Multinational Project Execution in Deepwater Petroleum Development Projects,” International Journal of Scientific Research in Civil Engineering, vol. 6, no. 6, pp. 158–176, 2022.
  35. O. T. Odofin, S. Owoade, E. Ogbuefi, J. C. Ogeawuchi, and O. Segun, “Integrating Event-Driven Architecture in Fintech Operations Using Apache Kafka and RabbitMQ Systems,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  36. T. P. Gbenle, A. A. Abayomi, A. C. Uzoka, J. C. Ogeawuchi, and O. S. Adanigbo, “Applying OAuth2 and JWT Protocols in Securing Distributed API Gateways: Best Practices and Case Review,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  37. J. E. Ozor, O. Sofoluwe, and D. D. Jambol, “A Review of Geomechanical Risk Management in Well Planning: Global Practices and Lessons from the Niger Delta,” International Journal of Scientific Research in Civil Engineering, vol. 5, no. 2, pp. 104–118, 2021.
  38. O. Benyeogor, D. Jambol, O. Amah, D. Obiga, S. Awe, and A. Erinle, “Pressure relief management philosophy for MPD operations on surface stack HPHT exploration wells,” SPE Nigeria Annual International Conference and Exhibition, 2019, doi: D033S014R005.
  39. S. Nwani, O. Abiola-Adams, B. O. Otokiti, and J. C. Ogeawuchi, “Building Operational Readiness Assessment Models for Micro, Small, and Medium Enterprises Seeking Government-Backed Financing,” Journal of Frontiers in Multidisciplinary Research, vol. 1, no. 01, pp. 38–43, 2020.
  40. J. O. Omisola, J. O. Shiyanbola, and G. O. Osho, “A Predictive Quality Assurance Model Using Lean Six Sigma: Integrating FMEA, SPC, and Root Cause Analysis for Zero-Defect Production Systems,” Unknown Journal, 2020.
  41. A. T. Ofoedu, J. E. Ozor, O. Sofoluwe, and D. D. Jambol, “A Root Cause Analytics Model for Diagnosing Offshore Process Failures Using Live Operational Data,” [Journal Not Specified], 2022.
  42. F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Policy-Oriented Framework for Multi-Agency Data Integration Across National Transportation and Infrastructure Systems,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 01, pp. 140–149, 2022.
  43. E. Wari and W. Zhu, “A survey on metaheuristics for optimization in food manufacturing industry,” Applied Soft Computing Journal, vol. 46, pp. 328–343, Sep. 2016, doi: 10.1016/j.asoc.2016.04.034.
  44. Chianumba, I. E. C., M. N., F. A. Y., A. Y. Osamika, and D, “Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics,” C., Ikhalea, N., Mustapha, A. Y., Forkuo, A. Y., & Osamika, D. (2022). Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics. International Journal of Social Science Exceptional Research, vol. 2022), 2022.
  45. O. A. Agboola, J. C. Ogeawuchi, A. A. Abayomi, A. Y. Onifade, O. O. George, and R. E. Dosumu, “Advances in Lead Generation and Marketing Efficiency through Predictive Campaign Analytics,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, no. 1, pp. 1143–1154, 2022, doi: 10.54660/.ijmrge.2022.3.1.1143-1154.
  46. N. Vandeput, “Inventory Optimization,” Inventory Optimization, Aug. 2020, doi: 10.1515/9783110673944.
  47. J. C. Ogeawuchi, A. Y. Onifade, A. A. Abayomi, O. A. Agoola, R. E. Dosumu, and O. O. George, “Systematic Review of Predictive Modeling for Marketing Funnel Optimization in B2B and B2C Systems,” Iconic Research And Engineering Journals, vol. 6, no. 3, pp. 267–286, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708471
  48. B. C. Ubamadu, D. Bihani, and A. I. Daraojimba, “Optimizing Smart Contract Development: A Practical Model for Gasless Transactions via Facial Recognition in Blockchain,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  49. E. Spiliotis, S. Makridakis, A. A. Semenoglou, and V. Assimakopoulos, “Comparison of statistical and machine learning methods for daily SKU demand forecasting,” Operational Research, vol. 22, no. 3, pp. 3037–3061, Jul. 2022, doi: 10.1007/S12351-020-00605-2.
  50. A. S. Ogunmokun, E. D. Balogun, and K. O. Ogunsola, “A strategic fraud risk mitigation framework for corporate finance cost optimization and loss prevention,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  51. O. Ilori, C. I. Lawal, S. C. Friday, N. J. Isibor, and E. C. Chukwuma-Eke, “Cybersecurity auditing in the digital age: A review of methodologies and regulatory implications,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 1, pp. 174–187, 2022, [Online]. Available: https://doi.org/10.54660/IJFMR.2022.3.1.174-187
  52. S. Makridakis, R. J. Hyndman, and F. Petropoulos, “Forecasting in social settings: The state of the art,” Int J Forecast, vol. 36, no. 1, pp. 15–28, Jan. 2020, doi: 10.1016/j.ijforecast.2019.05.011.
  53. F. Costantino, G. Di Gravio, A. Shaban, and M. Tronci, “Smoothing inventory decision rules in seasonal supply chains,” Expert Syst Appl, vol. 44, pp. 304–319, Feb. 2016, doi: 10.1016/j.eswa.2015.08.052.
  54. G. Merkuryeva, A. Valberga, and A. Smirnov, “Demand forecasting in pharmaceutical supply chains: A case study,” Procedia Comput Sci, vol. 149, pp. 3–10, 2019, doi: 10.1016/j.procs.2019.01.100.
  55. B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Telecom Infrastructure Audit Models for African Markets: A Data-Driven Governance Perspective,” Iconic Research and Engineering Journals, vol. 6, no. 6, pp. 434–448, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708536
  56. O. A. Agboola, J. C. Ogeawuchi, A. A. Abayomi, A. Y. Onifade, O. O. George, and R. E. Dosumu, “Advances in Lead Generation and Marketing Efficiency through Predictive Campaign Analytics,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, no. 1, pp. 1143–1154, 2022, doi: 10.54660/ijmrge.2022.3.1.1143-1154.
  57. O. E. Akpe, A. C. Mgbame, E. Ogbuefi, A. A. Abayomi, and O. O. Adeyelu, “The Role of Adaptive BI in Enhancing SME Agility During Economic Disruptions,” International Journal of Management and Organizational Research, vol. 1, no. 1, pp. 183–198, 2022, doi: 10.54660/ijmor.2022.1.1.183-198.
  58. E. Ogbuefi, A. C. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Data Democratization: Making Advanced Analytics Accessible for Micro and Small Enterprises,” International Journal of Management and Organizational Research, vol. 1, no. 1, pp. 199–212, 2022, doi: 10.54660/ijmor.2022.1.1.199-212.
  59. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Machine learning for automation: Developing data-driven solutions for process optimization and accuracy improvement,” Mach Learn, vol. 2, no. 1, p. 18, 2021.
  60. O. E. Adesemoye, E. C. Chukwuma-Eke, C. I. Lawal, N. J. Isibor, A. O. Akintobi, and F. S. Ezeh, “Improving financial forecasting accuracy through advanced data visualization techniques,” IRE Journals, vol. 4, no. 10, pp. 275–277, 2021, [Online]. Available: https://irejournals.com/paper-details/1708078
  61. O. M. Oluoha, A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. Orieno, “Optimizing Business Decision-Making with Advanced Data Analytics Techniques,” Iconic Research and Engineering Journals, vol. 6, no. 5, pp. 184–203, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1703887
  62. A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Business Intelligence Systems,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 713–722, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708317
  63. J. C. Ogeawuchi, A. Y. Onifade, A. A. Abayomi, O. A. Agboola, R. E. Dosumu, and O. O. George, “Systematic Review of Predictive Modeling for Marketing Funnel Optimization in B2B and B2C Systems,” Iconic Research and Engineering Journals, vol. 6, no. 3, pp. 267–286, 2022.
  64. A. Odetunde, B. I. Adekunle, and J. C. Ogeawuchi, “Using Predictive Analytics and Automation Tools for Real-Time Regulatory Reporting and Compliance Monitoring,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  65. N. Vandeput, “Data science for supply chain forecasting,” Data Science for Supply Chain Forecasting, pp. 1–282, Mar. 2021, doi: 10.1515/9783110671124.
  66. A. Oroojlooyjadid, M. R. Nazari, L. V. Snyder, and M. Takáč, “A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization,” Manufacturing and Service Operations Management, vol. 24, no. 1, pp. 285–304, Jan. 2022, doi: 10.1287/MSOM.2020.0939.
  67. R. Odogwu, J. C. Ogeawuchi, A. A. Abayomi, O. A. Agboola, and S. Owoade, “Optimizing Productivity in Asynchronous Remote Project Teams Through AI-Augmented Workflow Orchestration and Cognitive Load Balancing,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  68. O. O. Fagbore, J. C. Ogeawuchi, O. Ilori, N. J. Isibor, A. Odetunde, and B. I. Adekunle, “A Review of Internal Control and Audit Coordination Strategies in Investment Fund Governance,” International Journal of Social Science Exceptional Research, vol. 1, no. 02, pp. 58–74, 2022.
  69. S. Nwani, O. Abiola-Adams, B. O. Otokiti, and J. C. Ogeawuchi, “Constructing Revenue Growth Acceleration Frameworks Through Strategic Fintech Partnerships in Digital E-Commerce Ecosystems,” IRE Journals, vol. 6, no. 2, pp. 372–380, 2022.
  70. V. Kumar, E. N. Chibuzo, J. A. Garza-Reyes, A. Kumari, L. Rocha-Lona, and G. C. Lopez-Torres, “The Impact of Supply Chain Integration on Performance: Evidence from the UK Food Sector,” Procedia Manuf, vol. 11, pp. 814–821, 2017, doi: 10.1016/j.promfg.2017.07.183.
  71. A. Y. Onifade, J. C. Ogeawuchi, A. Ayodeji, and A. A. Abayomi, “Advances in Multi-Channel Attribution Modeling for Enhancing Marketing ROI in Emerging Economies,” IRE Journals, vol. 5, no. 6, pp. 360–376, 2021.
  72. O. M. Oluoha, A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. Orieno, “Development of a Compliance-Driven Identity Governance Model for Enhancing Enterprise Information Security,” Iconic Research and Engineering Journals, vol. 4, no. 11, pp. 310–324, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1702715
  73. A. A. Abayomi, A. C. Mgbame, O. E. Akpe, E. Ogbuefi, and O. O. Adeyelu, “Advancing Equity Through Technology: Inclusive Design of BI Platforms for Small Businesses,” Iconic Research and Engineering Journals, vol. 5, no. 4, pp. 235–250, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708220
  74. O. E. Akpe, A. C. Mgbame, E. Ogbuefi, A. A. Abayomi, and O. O. Adeyelu, “Bridging the Business Intelligence Gap in Small Enterprises: A Conceptual Framework for Scalable Adoption,” Iconic Research and Engineering Journals, vol. 5, no. 5, pp. 416–431, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708222
  75. E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, E. D. Balogun, and K. O. Ogunsola, “Real-time data analytics for enhancing supply chain efficiency,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 1, pp. 759–771, 2021, doi: 10.54660/.IJMRGE.2021.2.1.759-771.
  76. Esan, U. O. J., O. O. T., O. O., G. O. Omisola, and J. O, “Policy and operational synergies: Strategic supply chain optimization for national economic growth,” J., Uzozie, O. T., Onaghinor, O., Osho, G. O., & Omisola, J. O. (2022). Policy and operational synergies: Strategic supply chain optimization for national economic growth. International Journal of Social Science Exceptional Research, vol. 2022), 2022.
  77. J. N. C. Gonçalves, P. Cortez, M. S. Carvalho, and N. M. Frazão, “A multivariate approach for multi-step demand forecasting in assembly industries: Empirical evidence from an automotive supply chain,” Decis Support Syst, vol. 142, Mar. 2021, doi: 10.1016/j.dss.2020.113452.
  78. F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “The Role of Artificial Intelligence in Business Process Automation: A Model for Reducing Operational Costs and Enhancing Efficiency,” 2022.
  79. J. P. Onoja, O. Hamza, A. Collins, U. B. Chibunna, A. Eweja, and A. I. Daraojimba, “Digital Transformation and Data Governance: Strategies for Regulatory Compliance and Secure AI-Driven Business Operations,” 2021.
  80. J. Farhat and M. Owayjan, “ERP Neural Network Inventory Control,” Procedia Comput Sci, vol. 114, pp. 288–295, 2017, doi: 10.1016/j.procs.2017.09.039.
  81. M. Güller, Y. Uygun, and B. Noche, “Simulation-based optimization for a capacitated multi-echelon production-inventory system,” Journal of Simulation, vol. 9, no. 4, pp. 325–336, Nov. 2015, doi: 10.1057/JOS.2015.5.
  82. M. T. Ayumu and T. C. Ohakawa, “Real Estate Portfolio Valuation Techniques to Unlock Funding for Affordable Housing in Africa,” [Journal Not Specified], 2022.
  83. B. M. Omowole, H. E. Omokhoa, I. A. Ogundeji, and G. O. Achumie, “Blockchain-Enhanced Financial Transparency: A Conceptual Approach to Reporting and Compliance,” International Journal of Social Science Exceptional Research, vol. 1, no. 01, pp. 141–157, 2022.
  84. B. Adebisi, E. Aigbedion, O. B. Ayorinde, and E. C. Onukwulu, “A Conceptual Model for Predictive Asset Integrity Management Using Data Analytics to Enhance Maintenance and Reliability in Oil & Gas Operations,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, 2021.
  85. J. O. Omisola, J. O. Shiyanbola, and G. O. Osho, “A Predictive Quality Assurance Model Using Lean Six Sigma: Integrating FMEA, SPC, and Root Cause Analysis for Zero-Defect Production Systems,” Unknown Journal, 2020.
  86. E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics,” International Journal of Social Science Exceptional Research, vol. 1, no. 1, pp. 232–238, 2022.
  87. E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, and E. D. Balogun, “Enhancing data security with machine learning: A study on fraud detection algorithms,” Journal of Data Security and Fraud Prevention, vol. 7, no. 2, pp. 105–118, 2021.
  88. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “A predictive modeling approach to optimizing business operations: A case study on reducing operational inefficiencies through machine learning,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, 2021.
  89. F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “The Impact of Machine Learning on Image Processing: A Conceptual Model for Real-Time Retail Data Analysis and Model Optimization,” 2022.
  90. F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “A Conceptual Framework for AI-Driven Digital Transformation: Leveraging NLP and Machine Learning for Enhanced Data Flow in Retail Operations,” 2021.
  91. F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “The Role of AI in Cybersecurity: A Cross-Industry Model for Integrating Machine Learning and Data Analysis for Improved Threat Detection,” 2022.
  92. P. Gbenle, O. A. Abieba, W. O. Owobu, J. P. Onoja, A. I. Daraojimba, and A. H. Adepoju, “A Privacy-Preserving AI Model for Autonomous Detection and Masking of Sensitive User Data in Contact Center Analytics,” 2022.
  93. A. Abisoye and J. I. Akerele, “A High-Impact Data-Driven Decision-Making Model for Integrating Cutting-Edge Cybersecurity Strategies into Public Policy, Governance, and Organizational Frameworks,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 1, pp. 623–637, 2021, doi: 10.54660/.IJMRGE.2021.2.1.623-637.
  94. E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics,” International Journal of Social Science Exceptional Research, vol. 1, no. 1, pp. 232–238, 2022.
  95. A. Y. Onifade, J. C. Ogeawuchi, A. A. Abayomi, and O. Aderemi, “Systematic Review of Data-Driven GTM Execution Models across High-Growth Startups and Fortune 500 Firms,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 01, pp. 210–222, 2022.
  96. S. Batt, T. Grealis, O. Harmon, and P. Tomolonis, “Learning Tableau: A data visualization tool,” Journal of Economic Education, vol. 51, no. 3–4, pp. 317–328, Aug. 2020, doi: 10.1080/00220485.2020.1804503.
  97. C. M. Olszak, “Toward Better Understanding and Use of Business Intelligence in Organizations,” Information Systems Management, vol. 33, no. 2, pp. 105–123, Apr. 2016, doi: 10.1080/10580530.2016.1155946.
  98. Osamika, A. D., K.-A. B. S., M. M. C., A. Y. Ikhalea, and N, “Machine learning models for early detection of cardiovascular diseases: A systematic review,” S., Kelvin-Agwu, M. C., Mustapha, A. Y., & Ikhalea, N. (2021). Machine learning models for early detection of cardiovascular diseases: A systematic review. IRE Journals, vol. 2021), 2021, [Online]. Available: https://doi.org/IRE.1702780
  99. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Machine learning for automation: Developing data-driven solutions for process optimization and accuracy improvement,” Mach Learn, vol. 2, no. 1, 2021.
  100. A. M. Aamer, L. P. E. Yani, and I. M. A. Priyatna, “Data analytics in the supply chain management: Review of machine learning applications in demand forecasting,” Operations and Supply Chain Management, vol. 14, no. 1, pp. 1–13, 2021, doi: 10.31387/OSCM0440281.
  101. M. Holmlund et al., “Customer experience management in the age of big data analytics: A strategic framework,” J Bus Res, vol. 116, pp. 356–365, Aug. 2020, doi: 10.1016/J.JBUSRES.2020.01.022.
  102. O. A. Agboola, J. C. Ogeawuchi, O. E. Akpe, and A. A. Abayomi, “A Conceptual Model for Integrating Cybersecurity and Intrusion Detection Architecture into Grid Modernization Initiatives,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, no. 1, pp. 1099–1105, 2022, doi: 10.54660/.ijmrge.2022.3.1.1099-1105.
  103. A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, E. Ogbuefi, and S. Owoade, “A conceptual framework for real-time data analytics and decision-making in cloud-optimized business intelligence systems,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 713–722, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708317
  104. C. Vithitsoontorn and P. Chongstitvatana, “Demand Forecasting in Production Planning for Dairy Products Using Machine Learning and Statistical Method,” Proceedings of the 2022 International Electrical Engineering Congress, iEECON 2022, 2022, doi: 10.1109/IEECON53204.2022.9741683.
  105. A. Goli, H. Khademi-Zare, R. Tavakkoli-Moghaddam, A. Sadeghieh, M. Sasanian, and R. Malekalipour Kordestanizadeh, “An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand for dairy products: a case study,” Network: Computation in Neural Systems, vol. 32, no. 1, pp. 1–35, 2021, doi: 10.1080/0954898X.2020.1849841.
  106. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Predictive Analytics for Demand Forecasting: Enhancing Business Resource Allocation Through Time Series Models,” Journal of Frontiers in Multidisciplinary Research, vol. 2, no. 01, pp. 32–42, 2021.

Publication Details

Published in : Volume 5 | Issue 5 | September-October 2022
Date of Publication : 2022-09-10
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 156-175
Manuscript Number : SHISRRJ225526
Publisher : Shauryam Research Institute

ISSN : 2581-6306

Cite This Article :

Opeyemi Morenike Filani, John Oluwaseun Olajide, Grace Omotunde Osho, "A Multivariate Analysis Model for Predicting Sales Performance Based on Inventory and Delivery Metrics", Shodhshauryam, International Scientific Refereed Research Journal (SHISRRJ), ISSN : 2581-6306, Volume 5, Issue 5, pp.156-175, September-October.2022
URL : https://shisrrj.com/SHISRRJ225526

Article Preview