A Mobile Technology-Driven Framework for Tracking Medicine Sales and Delivery in Fragmentated Supply Chain Networks

Authors(4) :-Michael Aduojo Amuta, Muridzo Muonde, Ashiata Yetunde Mustapha, Akachukwu Obianuju Mbata

The complexity of pharmaceutical supply chains in developing and emerging economies is exacerbated by fragmentation, logistical opacity, and inadequate technological infrastructure. These challenges contribute to inefficiencies, medicine shortages, counterfeit drugs, and financial losses. Mobile technologies, particularly smartphones, mobile apps, and SMS-based systems offer a promising avenue for transforming how medicines are tracked, sold, and delivered across these networks. This paper proposes a Mobile Technology-Driven Framework for Tracking Medicine Sales and Delivery (MTF-TMSD) within fragmented supply chains. Relying solely on comprehensive literature review, the paper explores technological, logistical, and policy dimensions shaping medicine distribution. It further synthesizes best practices and case studies to design a theoretical framework adaptable to low-resource environments. The MTF-TMSD aims to enhance visibility, ensure compliance, improve last-mile delivery accuracy, and build system resilience. This research provides a foundation for future empirical implementations and digital health policy innovation.

Authors and Affiliations

Michael Aduojo Amuta
Getz Pharma Nigeria Limited, Lagos, Nigeria
Muridzo Muonde
Africure Pharmaceuticals Namibia
Ashiata Yetunde Mustapha
Kwara State Ministry of Health, Nigeria
Akachukwu Obianuju Mbata
Kaybat Pharmacy and Stores, Benin, Nigeria

Mobile Tracking, Pharmaceutical Logistics, Supply Chain Visibility, Medicine Delivery, Healthcare ICT, Last-Mile Monitoring

  1. K. Nikolopoulos, S. Buxton, M. Khammash, and P. Stern, “Forecasting branded and generic pharmaceuticals,” Int J Forecast, vol. 32, no. 2, pp. 344–357, Apr. 2016, doi: 10.1016/J.IJFORECAST.2015.08.001.
  2. J. E. Stiglitz and A. Jayadev, “Medicine for tomorrow: Some alternative proposals to promote socially beneficial research and development in pharmaceuticals,” J Generic Med, vol. 7, no. 3, pp. 217–226, Jul. 2010, doi: 10.1057/JGM.2010.21.
  3. E. Ogbuefi, C. A. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Affordable Automation: Leveraging Cloud-Based Healthcare Analytics Systems for Healthcare Innovation,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708219
  4. A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Healthcare Intelligence Systems,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708317
  5. A. Y. Forkuo, E. C. Chianumba, A. Y. Mustapha, D. Osamika, and L. S. Komi, “Advances in digital diagnostics and virtual care platforms for primary healthcare delivery in West Africa,” Methodology, vol. 96, no. 71, p. 48, 2022.
  6. J. G. Faulkenberry, A. Luberti, and S. Craig, “Electronic health records, mobile health, and the challenge of improving global health,” Curr Probl Pediatr Adolesc Health Care, vol. 52, no. 1, Jan. 2022, doi: 10.1016/j.cppeds.2021.101111.
  7. M. Gaynor, “Competition and quality in health care markets,” Foundations and Trends in Microeconomics, vol. 2, no. 6, pp. 441–508, 2006, doi: 10.1561/0700000024.
  8. H. Willenberg, E. Eberhardt, S. Loew, S. McDougall, and O. Hungr, “Hazard assessment and runout analysis for an unstable rock slope above an industrial site in the Riviera valley, Switzerland,” Landslides, vol. 6, no. 2, pp. 111–119, 2009, doi: 10.1007/S10346-009-0146-7.
  9. E. Nold and T. Williams, “Bar codes and their potential applications in hospital pharmacy,” Am J Hosp Pharm, vol. 42, no. 12, 1985.
  10. B. C. Ubamadu, D. Bihani, A. I. Daraojimba, G. O. Osho, and J. O. Omisola, “Optimizing Smart Contract Development: A Practical Model for Gasless Transactions via Facial Recognition in Blockchain,” Unknown Journal, 2022.
  11. B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Automating Risk Assessment and Loan Cleansing in Retail Lending: A Conceptual Fintech Framework,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 728–744, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708535
  12. O. E. Akpe, J. C. Ogeawuchi, A. A. Abayomi, and O. A. Agboola, “Advances in Sales Forecasting and Performance Analysis Using Excel and Tableau in Growth-Oriented Startups,” International Journal of Management and Organizational Research, vol. 1, no. 1, pp. 231–236, 2022, doi: 10.54660/ijmor.2022.1.1.231-236.
  13. E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, and A. Y. Forkuo, “Developing a framework for using AI in personalized medicine to optimize treatment plans,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 1, pp. 57–71, 2022.
  14. D. Allington, B. Duffy, S. Wessely, N. Dhavan, and J. Rubin, “Health-protective behaviour, social media usage and conspiracy belief during the COVID-19 public health emergency,” Psychol Med, vol. 51, no. 10, pp. 1763–1769, Jul. 2021, doi: 10.1017/S003329172000224X.
  15. D. J. Flint and B. Gammelgaard, “Value and customer service management,” Handbook of Global Supply Chain Management, pp. 51–64, Jan. 2007, doi: 10.4135/9781412976169.N4.
  16. G. Merkuryeva, A. Valberga, and A. Smirnov, “Demand forecasting in pharmaceutical supply chains: A case study,” Procedia Comput Sci, vol. 149, pp. 3–10, 2019, doi: 10.1016/J.PROCS.2019.01.100.
  17. E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, E. D. Balogun, and K. O. Ogunsola, “Real-time data analytics for enhancing supply chain efficiency,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 1, pp. 759–771, 2021, doi: 10.54660/.IJMRGE.2021.2.1.759-771.
  18. I. A. Omar, R. Jayaraman, M. S. Debe, K. Salah, I. Yaqoob, and M. Omar, “Automating Procurement Contracts in the Healthcare Supply Chain Using Blockchain Smart Contracts,” IEEE Access, vol. 9, pp. 37397–37409, 2021, doi: 10.1109/ACCESS.2021.3062471.
  19. Esan, U. O. J., O. O. T., O. O., G. O. Omisola, and J. O, “Policy and operational synergies: Strategic supply chain optimization for national economic growth,” J., Uzozie, O. T., Onaghinor, O., Osho, G. O., & Omisola, J. O. (2022). Policy and operational synergies: Strategic supply chain optimization for national economic growth. International Journal of Social Science Exceptional Research, vol. 2022), 2022.
  20. O. Ogunwoye, C. Onukwulu, J. Sam-bulya, M. O. Joel, and O. Achimie, “Optimizing Supplier Relationship Management for Energy Supply Chain,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  21. E. C. Onukwulu, I. A. I. N.-D. Dienagha, W. N. Digitemie, and P. I. Egwumokei, “Advances in Digital Twin Technology for Monitoring Energy Supply Chain Operations,” Iconic Research and Engineering Journals, vol. 5, no. 12, pp. 372–400, 2022.
  22. B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Telecom Infrastructure Audit Models for African Markets: A Data-Driven Governance Perspective,” Iconic Research and Engineering Journals, vol. 6, no. 6, pp. 434–448, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708536
  23. T. P. Gbenle, J. C. Ogeawuchi, A. A. Abayomi, O. A. Agboola, and A. C. Uzoka, “Advances in Cloud Infrastructure Deployment Using AWS Services for Small and Medium Enterprises,” Iconic Research and Engineering Journals, vol. 3, no. 11, pp. 365–381, 2020, [Online]. Available: https://www.irejournals.com/paper-details/1708522
  24. O. Mudanyali, S. Dimitrov, U. Sikora, S. Padmanabhan, I. Navruz, and A. Ozcan, “Integrated Rapid-Diagnostic-Test Reader Platform on a Cellphone,” Lab Chip, vol. 12, no. 15, 2012.
  25. C. Fiandrino et al., “CrowdSenSim: a Simulation Platform for Mobile Crowdsensing in Realistic Urban Environments,” IEEE Access, vol. 5, 2017.
  26. A. A. Abayomi, C. A. Mgbame, O. E. Akpe, E. Ogbuefi, and O. O. Adeyelu, “Advancing Equity Through Technology: Inclusive Design of Healthcare Analytics Platforms for Healthcare,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708220
  27. C. A. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Barriers and Enablers of Healthcare Analytics Tool Implementation in Underserved Healthcare Communities,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2020, [Online]. Available: https://www.irejournals.com/paper-details/1708221
  28. E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “A conceptual framework for leveraging big data and AI in enhancing healthcare delivery and public health policy,” IRE Journals, vol. 5, no. 6, pp. 303–310, 2021.
  29. J. C. Ogeawuchi, A. C. Uzoka, A. A. Abayomi, O. A. Agboola, and P. Gbenle, “Innovations in Data Modeling and Transformation for Scalable Healthcare Intelligence on Modern Cloud Platforms,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708319
  30. M. C. Were, C. Sinha, and C. Catalani, “A systematic approach to equity assessment for digital health interventions: Case example of mobile personal health records,” Journal of the American Medical Informatics Association, vol. 26, no. 8–9, pp. 884–890, Apr. 2019, doi: 10.1093/JAMIA/OCZ071.
  31. E. Baccarelli, N. Cordeschi, A. Mei, M. Panella, M. Shojafar, and J. Stefa, “Energy-efficient dynamic traffic offloading and reconfiguration of networked data centers for big data stream mobile computing: Review, challenges, and a case study,” IEEE Netw, 2016.
  32. H. O. Egharevba, O. Fatokun, M. Aboh, O. O. Kunle, S. Nwaka, and K. S. Gamaniel, “Piloting a smartphone-based application for tracking and supply chain management of medicines in Africa,” PLoS One, vol. 14, no. 7, p. e0217976, Jul. 2019, doi: 10.1371/JOURNAL.PONE.0217976’,.
  33. S. Madon, J. O. Amaguru, M. N. Malecela, and E. Michael, “Can mobile phones help control neglected tropical diseases? Experiences from Tanzania,” Soc Sci Med, vol. 102, pp. 103–110, Feb. 2014, doi: 10.1016/J.SOCSCIMED.2013.11.036.
  34. O. E. Akpe, C. A. Mgbame, E. Ogbuefi, A. A. Abayomi, and O. O. Adeyelu, “Bridging the Healthcare Intelligence Gap in Healthcare Enterprises: A Conceptual Framework for Scalable Adoption,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708222
  35. E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics,” International Journal of Social Science Exceptional Research, vol. 1, no. 1, pp. 232–238, 2022.
  36. L. S. Komi, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and A. Y. Mustapha, “A conceptual framework for training community health workers through virtual public health education modules,” IRE Journals, vol. 5, no. 11, pp. 332–335, 2022.
  37. O. K. Osuji and O. T. Umahi, “Pharmaceutical companies and access to medicines-social integration and ethical CSR resolution of a global public choice problem,” J Glob Ethics, vol. 8, no. 2–3, pp. 139–167, Dec. 2012, doi: 10.1080/17449626.2012.702678.
  38. “Making Medicines in Africa,” Making Medicines in Africa, 2016, doi: 10.1007/978-1-137-54647-0.
  39. S. Saleh, R. Khodor, M. Alameddine, and M. Baroud, “Readiness of healthcare providers for eHealth: the case from primary healthcare centers in Lebanon,” BMC Health Serv Res, vol. 16, no. 1, 2016.
  40. D. Jiang and G. Shi, “Research on Data Security and Privacy Protection of Wearable Equipment in Healthcare,” J Healthc Eng, vol. 2021, 2021, doi: 10.1155/2021/6656204.
  41. O. E. Akpe, J. C. Ogeawuchi, A. A. Abayomi, and O. A. Agboola, “Advances in Stakeholder-Centric Product Lifecycle Management for Complex, Multi-Stakeholder Energy Program Ecosystems,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708349
  42. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Machine learning for automation: Developing data-driven solutions for process optimization and accuracy improvement,” Mach Learn, vol. 2, no. 1, p. 18, 2021.
  43. J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, O. A. Agboola, and S. Owoade, “Systematic Review of Advanced Data Governance Strategies for Securing Cloud-Based Data Warehouses and Pipelines,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708318
  44. O. E. Adesemoye, E. C. Chukwuma-Eke, C. I. Lawal, N. J. Isibor, A. O. Akintobi, and F. S. Ezeh, “Improving financial forecasting accuracy through advanced data visualization techniques,” IRE Journals, vol. 4, no. 10, pp. 275–277, 2021, [Online]. Available: https://irejournals.com/paper-details/1708078
  45. N. Muinga et al., “Digital health Systems in Kenyan Public Hospitals: A mixed-methods survey,” BMC Med Inform Decis Mak, vol. 20, no. 1, Jan. 2020, doi: 10.1186/S12911-019-1005-7.
  46. E. K. Kossi, J. I. Sæbø, J. Braa, M. M. Jalloh, and A. Manya, “Developing decentralised health information systems in developing countries –cases from Sierra Leone and Kenya,” The Journal of Community Informatics, vol. 9, no. 2, Nov. 2012, doi: 10.15353/JOCI.V9I2.3164.
  47. “National Guidelines on Drug Distribution in Nigeria,” Federal Ministry of Health (FMOH), Ed, vol. 2, 2012.
  48. “Piloting a smartphone-based application for tracking and supply chain management of medicines in Africa | PLOS One.” Accessed: Jun. 13, 2021. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217976
  49. S. Chang, W. Yang, and H. Deguchi, “Care providers, access to care, and the Long-term Care Nursing Insurance in China: An agent-based simulation,” Soc Sci Med, vol. 244, p. 112667, Jan. 2020, doi: 10.1016/J.SOCSCIMED.2019.112667.
  50. E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “A conceptual framework for leveraging big data and AI in enhancing healthcare delivery and public health policy,” IRE Journals, vol. 5, no. 6, pp. 303–310, 2021.
  51. T. Martin, “Assessing mHealth: Opportunities and barriers to patient engagement,” J Health Care Poor Underserved, vol. 23, no. 3, pp. 935–941, Aug. 2012, doi: 10.1353/HPU.2012.0087.
  52. A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, E. Ogbuefi, and S. Owoade, “A conceptual framework for real-time data analytics and decision-making in cloud-optimized business intelligence systems,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 713–722, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708317
  53. B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Leveraging Real-Time Dashboards for Strategic KPI Tracking in Multinational Finance Operations,” Iconic Research And Engineering Journals, vol. 4, no. 8, pp. 189–205, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708537
  54. F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “Integrating TensorFlow with Cloud-Based Solutions: A Scalable Model for Real-Time Decision-Making in AI-Powered Retail Systems,” 2022.
  55. L. Tawalbeh, R. Mehmood, E. Benkhlifa, and H. Song, “Cloud Computing Model and Big Data Analysis for Healthcare Applications,” IEEE Access, vol. 4, 2016.
  56. W. Mutale et al., “Improving health information systems for decision making across five sub-Saharan African countries: Implementation strategies from the African Health Initiative,” BMC Health Serv Res, vol. 13, no. SUPPL.2, 2013, doi: 10.1186/1472-6963-13-S2-S9.
  57. R. Crichton, D. Moodley, A. Pillay, R. Gakuba, and C. J. Seebregts, “An architecture and reference implementation of an open health information mediator: Enabling interoperability in the Rwandan health information exchange,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7789 LNCS, pp. 87–104, 2013, doi: 10.1007/978-3-642-39088-3_6.
  58. S. Bradley and E. McAuliffe, “Mid-level providers in emergency obstetric and newborn health care: Factors affecting their performance and retention within the Malawian health system,” Hum Resour Health, vol. 7, Feb. 2009, doi: 10.1186/1478-4491-7-14.
  59. P. Erah and W. Ojieabu, “Success of the Control of Tuberculosis in Nigeria: A Review,” International Journal of Health Research, vol. 2, no. 1, 2009.
  60. I. T. Adeleke, Q. B. Suleiman-Abdul, A. Aliyu, I. A. Ishaq, and R. A. Adio, “Deploying unqualified personnel in health records practice: Role substitution or quackery? Implications for health services delivery in Nigeria,” Health Information Management Journal, vol. 48, no. 3, pp. 152–156, Sep. 2019, doi: 10.1177/1833358318800459.
  61. I. E. Agbehadji, B. O. Awuzie, A. B. Ngowi, and R. C. Millham, “Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing,” Int J Environ Res Public Health, vol. 17, no. 15, pp. 1–16, Aug. 2020, doi: 10.3390/IJERPH17155330.
  62. Chianumba, I. E. C., M. N., F. A. Y., A. Y. Osamika, and D, “Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics,” C., Ikhalea, N., Mustapha, A. Y., Forkuo, A. Y., & Osamika, D. (2022). Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics. International Journal of Social Science Exceptional Research, vol. 2022), 2022.
  63. C. I. Okolie, O. Hamza, A. Eweje, A. Collins, G. O. Babatunde, and B. C. Ubamadu, “Leveraging Digital Transformation and Business Analysis to Improve Healthcare Provider Portal,” ICONIC RESEARCH AND ENGINEERING JOURNALS, vol. 4, no. 10, pp. 253–257, 2021.
  64. S. Griffis and T. Goldsby, “Transportation management systems: an exploration of progress and future prospects,” J Transport Manag, vol. 18, 2007.
  65. M. Smith, S. Madon, A. Anifalaje, M. Lazarro-Malecela, and E. Michael, “Integrated Health Information Systems in Tanzania: Experience and Challenges,” Electronic Journal of Information Systems in Developing Countries, vol. 33, no. 1, pp. 1–21, Feb. 2008, doi: 10.1002/J.1681-4835.2008.TB00227.X.
  66. J. H. Lungo, “The reliability and usability of district health information software: case studies from Tanzania.,” Tanzan J Health Res, vol. 10, no. 1, pp. 39–45, 2008, doi: 10.4314/THRB.V10I1.14340.
  67. E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, and E. D. Balogun, “Enhancing data security with machine learning: A study on fraud detection algorithms,” Journal of Data Security and Fraud Prevention, vol. 7, no. 2, pp. 105–118, 2021.
  68. O. Ilori, C. I. Lawal, S. C. Friday, N. J. Isibor, and E. C. Chukwuma-Eke, “The Role of Data Visualization and Forensic Technology in Enhancing Audit Effectiveness: A Research Synthesis,” 2022.
  69. W. O. Owobu, O. A. Abieba, P. Gbenle, J. P. Onoja, A. I. Daraojimba, and A. H. Adepoju, “Conceptual Framework for Deploying Data Loss Prevention and Cloud Access Controls in Multi-Layered Security Environments,” 2022.
  70. V. Muthee et al., “Site readiness assessment preceding the implementation of a HIV care and treatment electronic medical record system in Kenya,” Int J Med Inform, vol. 109, pp. 23–29, Jan. 2018, doi: 10.1016/j.ijmedinf.2017.10.019.
  71. L. S. Komi, E. C. Chianumba, A. Yeboah, D. O. Forkuo, and A. Y. Mustapha, “Advances in Public Health Outreach Through Mobile Clinics and Faith-Based Community Engagement in Africa,” 2021.
  72. A. Y. Mustapha, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and L. S. Komi, “Systematic Review of Mobile Health (mHealth) Applications for Infectious Disease Surveillance in Developing Countries,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
  73. O. Mudanyali, S. Dimitrov, U. Sikora, S. Padmanabhan, I. Navruz, and A. Ozcan, “Integrated rapid-diagnostic-test reader platform on a cellphone.,” Lab Chip, vol. 12, no. 15, pp. 2678–86, Aug. 2012, doi: 10.1039/c2lc40235a.
  74. L. S. Komi, E. C. Chianumba, A. Yeboah, D. O. Forkuo, and A. Y. Mustapha, “A Conceptual Framework for Telehealth Integration in Conflict Zones and Post-Disaster Public Health Responses,” 2021.
  75. A. Franklin et al., “Dashboard visualizations: Supporting real-time throughput decision-making,” J Biomed Inform, vol. 71, pp. 211–221, Jul. 2017, doi: 10.1016/J.JBI.2017.05.024.
  76. A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Developing Low-Cost Dashboards for Business Process Optimization in SMEs,” International Journal of Management and Organizational Research, vol. 1, no. 1, pp. 214–230, 2022, doi: 10.54660/ijmor.2022.1.1.214-230.
  77. A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Developing Low-Cost Dashboards for Business Process Optimization in SMEs,” International Journal of Advanced Multidisciplinary Research and Studies, vol. 4, 2022.
  78. F. Rassaei, W. S. Soh, and K. C. Chua, “Demand Response for Residential Electric Vehicles with Random Usage Patterns in Smart Grids,” IEEE Trans Sustain Energy, vol. 6, no. 4, pp. 1367–1376, Oct. 2015, doi: 10.1109/TSTE.2015.2438037.
  79. M. N. Fekri, K. Grolinger, and S. Mir, “Distributed load forecasting using smart meter data: Federated learning with Recurrent Neural Networks,” International Journal of Electrical Power & Energy Systems, vol. 137, p. 107669, May 2022, doi: 10.1016/J.IJEPES.2021.107669.
  80. C. F. Lynch, T. P. Stank, and S. Scott, “Logistics outsourcing,” Handbook of Global Supply Chain Management, pp. 373–392, Jan. 2007, doi: 10.4135/9781412976169.N22.
  81. I. Sadler, “Logistics in Manufacturing Organisations,” Logistics and Supply Chain Integration, pp. 31–69, May 2012, doi: 10.4135/9781446214312.N2.
  82. N. Leon, H. Schneider, and E. Daviaud, “Applying a framework for assessing the health system challenges to scaling up mHealth in South Africa,” BMC Med Inform Decis Mak, vol. 12, no. 1, 2012, doi: 10.1186/1472-6947-12-123.
  83. L. P. C. Brewer et al., “Back to the future: Achieving health equity through health informatics and digital health,” JMIR Mhealth Uhealth, vol. 8, no. 1, 2020, doi: 10.2196/14512.
  84. F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “The Impact of Machine Learning on Image Processing: A Conceptual Model for Real-Time Retail Data Analysis and Model Optimization,” 2022.
  85. B. I. Ashiedu, E. Ogbuefi, S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Leveraging Real-Time Dashboards for Strategic KPI Tracking in Multinational Finance Operations,” Iconic Research and Engineering Journals, vol. 4, no. 8, pp. 189–205, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708537
  86. A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Business Intelligence Systems,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 713–722, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708317
  87. G. O. Osho, J. O. Omisola, and J. O. Shiyanbola, “An Integrated AI-Power BI Model for Real-Time Supply Chain Visibility and Forecasting: A Data-Intelligence Approach to Operational Excellence,” Unknown Journal, 2020.
  88. H. O. Egharevba, O. Fatokun, M. Aboh, O. O. Kunle, S. Nwaka, and K. S. Gamaniel, “Piloting a smartphone-based application for tracking and supply chain management of medicines in Africa,” PLoS One, vol. 14, no. 7, p. e0217976, Jul. 2019, doi: 10.1371/JOURNAL.PONE.0217976.
  89. E. Ogbuefi, A. C. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Affordable automation: Leveraging cloud-based BI systems for SME sustainability,” Iconic Research and Engineering Journals, vol. 5, no. 12, pp. 489–505, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708219
  90. J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, O. A. Agboola, E. Ogbuefi, and S. Owoade, “Systematic review of advanced data governance strategies for securing cloud-based data warehouses and pipelines,” Iconic Research and Engineering Journals, vol. 6, no. 1, pp. 784–794, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708318
  91. W. O. Owobu, O. A. Abieba, P. Gbenle, J. P. Onoja, A. I. Daraojimba, and A. H. Adepoju, “Conceptual Framework for Deploying Data Loss Prevention and Cloud Access Controls in Multi-Layered Security Environments,” 2022.
  92. P. Yadav, “Health Product Supply Chains in Developing Countries: Diagnosis of the Root Causes of Underperformance and an Agenda for Reform,” Health Syst Reform, vol. 1, no. 2, 2015.
  93. “Harmonized monitoring and evaluation indicators for procurement and supply management systems,” 2011, World Health Organisation.
  94. E. C. Onukwulu, I. N. Dienagha, W. N. Digitemie, and P. I. Egbumokei, “Predictive Analytics for Mitigating Supply Chain Disruptions in Energy Operations,” Iconic Research and Engineering Journals, vol. 5, no. 3, pp. 256–282, 2021.
  95. I. Sadler, “International Logistics (with David Taylor),” Logistics and Supply Chain Integration, pp. 99–123, May 2012, doi: 10.4135/9781446214312.N4.
  96. M. Vledder, J. Friedman, M. Sjöblom, T. Brown, and P. Yadav, “Improving Supply Chain for Essential Drugs in Low-Income Countries: Results from a Large Scale Randomized Experiment in Zambia,” Health Syst Reform, vol. 5, no. 2, pp. 158–177, Apr. 2019, doi: 10.1080/23288604.2019.1596050.
  97. P. Gbenle, O. A. Abieba, W. O. Owobu, J. P. Onoja, A. I. Daraojimba, and A. H. Adepoju, “A Conceptual Model for Scalable and Fault-Tolerant Cloud-Native Architectures Supporting Critical Real-Time Analytics in Emergency Response Systems,” 2022.
  98. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Predictive Analytics for Demand Forecasting: Enhancing Business Resource Allocation Through Time Series Models,” Journal of Frontiers in Multidisciplinary Research, vol. 2, no. 01, pp. 32–42, 2021.
  99. J. D. D’Amore et al., “Are meaningful use stage 2 certified EHRs ready for interoperability? Findings from the SMART C-CDA collaborative,” Journal of the American Medical Informatics Association, vol. 21, no. 6, pp. 1060–1068, 2014, doi: 10.1136/AMIAJNL-2014-002883.
  100. V. Saini, D. Pal, and S. R.-J. of A. I. Research, “Data Quality Assurance Strategies In Interoperable Health Systems,” researchgate.net, Accessed: Jun. 05, 2025. [Online]. Available: https://www.researchgate.net/profile/Dheeraj-Kumar-Pal/publication/390931351_Data_Quality_Assurance_Strategies_In_Interoperable_Health_Systems/links/6802f59edf0e3f544f42c826/Data-Quality-Assurance-Strategies-In-Interoperable-Health-Systems.pdf
  101. L. S. Komi, E. C. Chianumba, A. Yeboah, D. O. Forkuo, and A. Y. Mustapha, “Advances in Community-Led Digital Health Strategies for Expanding Access in Rural and Underserved Populations,” 2021.
  102. M. Egemba, D. Bolarinwa, and M. Ogundipe, “Innovative public health strategies and care delivery models to enhance outcomes for people living with HIV,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 6, no. 2, pp. 264–276, 2025, doi: https://doi.org/10.54660/.IJMRGE.2025.6.2.264-276.
  103. A. Fayoumi and R. Williams, “An integrated socio-technical enterprise modelling: A scenario of healthcare system analysis and design,” J Ind Inf Integr, vol. 23, p. 100221, Sep. 2021, doi: 10.1016/J.JII.2021.100221.

Publication Details

Published in : Volume 5 | Issue 6 | November-December 2022
Date of Publication : 2022-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 216-235
Manuscript Number : SHISRRJ22582
Publisher : Shauryam Research Institute

ISSN : 2581-6306

Cite This Article :

Michael Aduojo Amuta, Muridzo Muonde, Ashiata Yetunde Mustapha, Akachukwu Obianuju Mbata, "A Mobile Technology-Driven Framework for Tracking Medicine Sales and Delivery in Fragmentated Supply Chain Networks", Shodhshauryam, International Scientific Refereed Research Journal (SHISRRJ), ISSN : 2581-6306, Volume 5, Issue 6, pp.216-235, November-December.2022
URL : https://shisrrj.com/SHISRRJ22582

Article Preview