Enhancing Audience Engagement through Predictive Analytics: AI Models for Improving Content Interactions and Retention

Authors(3) :-Chigozie Emmanuel Benson, Chinelo Harriet Okolo, Olatunji Oke

This paper explores the role of predictive analytics and AI models in enhancing audience engagement, with a focus on improving content interactions and user retention. It highlights how AI-driven personalization, predictive segmentation, and sentiment analysis enable platforms to deliver tailored user experiences. Theoretical concepts such as recommendation systems, natural language processing, and churn prediction models are examined to showcase how AI optimizes engagement strategies. The paper also discusses the benefits of AI models, including increased personalization, higher retention rates, and deeper user insights. Additionally, it addresses technical challenges like data quality and computational costs and ethical considerations such as privacy, algorithmic bias, and regulatory compliance. Recommendations are provided for content creators, marketers, and AI developers to adopt best practices that enhance engagement while ensuring transparency, fairness, and privacy. By leveraging predictive analytics and responsible AI practices, platforms can create more personalized, user-centric, and ethically sound content experiences.

Authors and Affiliations

Chigozie Emmanuel Benson
Aljazeera Media Network - Doha, Qatar
Chinelo Harriet Okolo
University of Central Missouri, Warrensburg, Missouri, USA
Olatunji Oke
Lagos Indicator Magazine, Lagos, Nigeria

Predictive Analytics, Audience Engagement, Personalization, Sentiment Analysis, Churn Prediction, Ethical AI

  1. Achieng, K. O. (2019). Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Computers & Geosciences, 133, 104320.
  2. Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., & Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age of AI. In (Vol. 60, pp. 102387): Elsevier.
  3. Bharadiya, J. P. (2023). Machine learning and AI in business intelligence: Trends and opportunities. International Journal of Computer (IJC), 48(1), 123-134.
  4. Boppiniti, S. T. (2022). Exploring the Synergy of AI, ML, and Data Analytics in Enhancing Customer Experience and Personalization. International Machine learning journal and Computer Engineering, 5(5).
  5. Breidbach, C. F., & Maglio, P. (2020). Accountable algorithms? The ethical implications of data-driven business models. Journal of Service Management, 31(2), 163-185.
  6. Busuioc, M. (2021). Accountable artificial intelligence: Holding algorithms to account. Public administration review, 81(5), 825-836.
  7. Cheng, L., Varshney, K. R., & Liu, H. (2021). Socially responsible ai algorithms: Issues, purposes, and challenges. Journal of Artificial Intelligence Research, 71, 1137-1181.
  8. Croteau, D., & Hoynes, W. (2018). Media/Society: Technology, industries, content, and users: Sage Publications.
  9. de Bruijn, H., Warnier, M., & Janssen, M. (2022). The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-making. Government Information Quarterly, 39(2), 101666.
  10. Devriendt, F., Berrevoets, J., & Verbeke, W. (2021). Why you should stop predicting customer churn and start using uplift models. Information Sciences, 548, 497-515.
  11. Eboigbe, E. O., Farayola, O. A., Olatoye, F. O., Nnabugwu, O. C., & Daraojimba, C. (2023). Business intelligence transformation through AI and data analytics. Engineering Science & Technology Journal, 4(5), 285-307.
  12. El Zarif, O., Da Costa, D. A., Hassan, S., & Zou, Y. (2020). On the relationship between user churn and software issues. Paper presented at the Proceedings of the 17th International Conference on Mining Software Repositories.
  13. G. Martín, A., Fernández-Isabel, A., Martín de Diego, I., & Beltrán, M. (2021). A survey for user behavior analysis based on machine learning techniques: current models and applications. Applied Intelligence, 51(8), 6029-6055.
  14. Ghani, N. A., Hamid, S., Hashem, I. A. T., & Ahmed, E. (2019). Social media big data analytics: A survey. Computers in Human behavior, 101, 417-428.
  15. Gupta, S., Leszkiewicz, A., Kumar, V., Bijmolt, T., & Potapov, D. (2020). Digital analytics: Modeling for insights and new methods. Journal of Interactive Marketing, 51(1), 26-43.
  16. Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132.
  17. Hoofnagle, C. J., Van Der Sloot, B., & Borgesius, F. Z. (2019). The European Union general data protection regulation: what it is and what it means. Information & Communications Technology Law, 28(1), 65-98.
  18. Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., & Salehi, M. (2018). Evaluating collaborative filtering recommender algorithms: a survey. IEEE Access, 6, 74003-74024.
  19. Janzer, A. (2020). Subscription marketing: Strategies for nurturing customers in a world of churn: Cuesta Park Consulting.
  20. Jauro, F., Chiroma, H., Gital, A. Y., Almutairi, M., Shafi’i, M. A., & Abawajy, J. H. (2020). Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend. Applied Soft Computing, 96, 106582.
  21. Kamal, M., & Bablu, T. A. (2022). Machine learning models for predicting click-through rates on social media: Factors and performance analysis. International Journal of Applied Machine Learning and Computational Intelligence, 12(4), 1-14.
  22. Kastrati, Z., Dalipi, F., Imran, A. S., Pireva Nuci, K., & Wani, M. A. (2021). Sentiment analysis of students’ feedback with NLP and deep learning: A systematic mapping study. applied sciences, 11(9), 3986.
  23. Kelleher, J. D., Mac Namee, B., & D'arcy, A. (2020). Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies: MIT press.
  24. Keller, D. (2018). The right tools: Europe’s intermediary liability laws and the EU 2016 general data protection regulation. Berkeley Technology Law Journal, 33(1), 297-378.
  25. Khan, A. R., & Aziz, M. T. (2023). Harnessing Big Data for precision marketing: A deep dive into customer segmentation and predictive analytics in the digital era. AI, IoT and the Fourth Industrial Revolution Review, 13(7), 91-102.
  26. Kumar, V., & Garg, M. (2018). Predictive analytics: a review of trends and techniques. International Journal of Computer Applications, 182(1), 31-37.
  27. Liao, M., & Sundar, S. S. (2022). When e-commerce personalization systems show and tell: Investigating the relative persuasive appeal of content-based versus collaborative filtering. Journal of Advertising, 51(2), 256-267.
  28. Lin, H.-Y. (2022). Large-scale artificial intelligence models. Computer, 55(05), 76-80.
  29. Liu, H., Huang, Y., Wang, Z., Liu, K., Hu, X., & Wang, W. (2019). Personality or value: A comparative study of psychographic segmentation based on an online review enhanced recommender system. applied sciences, 9(10), 1992.
  30. Lopez, S. (2023). Optimizing Marketing ROI with Predictive Analytics: Harnessing Big Data and AI for Data-Driven Decision Making. Journal of Artificial Intelligence Research, 3(2), 9-36.
  31. Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 81.
  32. Newman, N. (2018). Journalism, media and technology trends and predictions 2018: Reuters Institute for the Study of Journalism.
  33. Quesenberry, K. A., & Coolsen, M. K. (2023). Brand Storytelling: Integrated Marketing Communications for the Digital Media Landscape: Rowman & Littlefield.
  34. Quijano-Sánchez, L., Cantador, I., Cortés-Cediel, M. E., & Gil, O. (2020). Recommender systems for smart cities. Information systems, 92, 101545.
  35. Rane, N. (2023). Enhancing customer loyalty through Artificial Intelligence (AI), Internet of Things (IoT), and Big Data technologies: improving customer satisfaction, engagement, relationship, and experience. Internet of Things (IoT), and Big Data Technologies: Improving Customer Satisfaction, Engagement, Relationship, and Experience (October 13, 2023).
  36. Saha, L., Tripathy, H. K., Gaber, T., El-Gohary, H., & El-kenawy, E.-S. M. (2023). Deep churn prediction method for telecommunication industry. Sustainability, 15(5), 4543.
  37. Sanborn, F. (2022). A cognitive psychology of mass communication: Routledge.
  38. Shahbaznezhad, H., Dolan, R., & Rashidirad, M. (2021). The role of social media content format and platform in users’ engagement behavior. Journal of Interactive Marketing, 53(1), 47-65.
  39. Srivastava, P. R., & Eachempati, P. (2021). Intelligent employee retention system for attrition rate analysis and churn prediction: An ensemble machine learning and multi-criteria decision-making approach. Journal of Global Information Management (JGIM), 29(6), 1-29.
  40. Talaat, F. M., Aljadani, A., Alharthi, B., Farsi, M. A., Badawy, M., & Elhosseini, M. (2023). A mathematical model for customer segmentation leveraging deep learning, explainable AI, and RFM analysis in targeted marketing. Mathematics, 11(18), 3930.
  41. Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A survey of sentiment analysis: Approaches, datasets, and future research. applied sciences, 13(7), 4550.
  42. Taufick, R. D. (2021). The underdeterrence, underperformance response to privacy, data protection laws. Technology in Society, 67, 101752.
  43. Trunfio, M., & Rossi, S. (2021). Conceptualising and measuring social media engagement: A systematic literature review. Italian Journal of Marketing, 2021(3), 267-292.
  44. Ur Rahaman, S., Kumar, S., & Puchakayala, P. (2021). Data-Driven Customer Segmentation: Advancing Precision Marketing through Analytics and Machine Learning Techniques. J Artif Intell Mach Learn & Data Sci 2021, 1(1), 1356-1362.
  45. Wang, Y., Kung, L., Wang, W. Y. C., & Cegielski, C. G. (2018). An integrated big data analytics-enabled transformation model: Application to health care. Information & Management, 55(1), 64-79.
  46. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780.
  47. Widayanti, R., Chakim, M. H. R., Lukita, C., Rahardja, U., & Lutfiani, N. (2023). Improving recommender systems using hybrid techniques of collaborative filtering and content-based filtering. Journal of Applied Data Sciences, 4(3), 289-302.
  48. Yang, Q., Hayat, N., Al Mamun, A., Makhbul, Z. K. M., & Zainol, N. R. (2022). Sustainable customer retention through social media marketing activities using hybrid SEM-neural network approach. Plos one, 17(3), e0264899.
  49. Zangana, H. M., & Abdulazeez, A. M. (2023). Developed Clustering Algorithms for Engineering Applications: A Review. International Journal of Informatics, Information System and Computer Engineering (INJIISCOM), 4(2), 147-169.
  50. Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7(1), 439-457.

Publication Details

Published in : Volume 6 | Issue 4 | July-August 2023
Date of Publication : 2023-08-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 121-134
Manuscript Number : SHISRRJ236156
Publisher : Shauryam Research Institute

ISSN : 2581-6306

Cite This Article :

Chigozie Emmanuel Benson, Chinelo Harriet Okolo, Olatunji Oke, "Enhancing Audience Engagement through Predictive Analytics: AI Models for Improving Content Interactions and Retention", Shodhshauryam, International Scientific Refereed Research Journal (SHISRRJ), ISSN : 2581-6306, Volume 6, Issue 4, pp.121-134, July-August.2023
URL : https://shisrrj.com/SHISRRJ236156

Article Preview