Systematic Drought Examination through Time Series Model Implementation

Authors(2) :-K. Madhu Sudhan Reddy, S. Himani

This project focuses on using time series modeling techniques to analyze drought conditions over time. It seeks to apply these models to drought data in order to comprehend and characterize drought patterns, severity, duration, etc. It builds time series models using historical drought-related data (precipitation, soil moisture, reservoir levels, etc.) and assesses various time series model types to determine the most efficient methods for drought analysis. Here, methodical experiments are conducted using a variety of time series models and datasets in order to thoroughly validate the modeling approach that has been selected. This modeling approach uses time series models to analyze droughts, both hydrological and meteorological, and to extract insights that can be used to enhance drought monitoring, forecasting, and decision-making.

Authors and Affiliations

K. Madhu Sudhan Reddy

S. Himani

severity, duration, methodical, approach.

  1. Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef] [Green Version]
  2. Bevan, J. Drought risk in the Anthropocene: From the jaws of death to the waters of life. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380, 20220003. [Google Scholar] [CrossRef]
  3. Wilhite, D.A.; Pulwarty, R.S. Drought as hazard: Understanding the natural and social context. In Drought and Water Crises: Integrating Science, Management, and Policy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
  4. Van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
  5. Kiem, A.S.; Johnson, F.; Westra, S.; van Dijk, A.; Evans, J.P.; O’donnell, A.; Rouillard, A.; Barr, C.; Tyler, J.; Thyer, M.; et al. Natural hazards in Australia: Droughts. Clim. Chang. 2016, 139, 37–54. [Google Scholar] [CrossRef]
  6. Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
  7. Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
  8. Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965; p. 58. Available online: https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf (accessed on 10 December 2018).
  9. Faghmous, J.H.; Kumar, V. A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science. Big Data 2014, 2, 155–163. [Google Scholar] [CrossRef]
  10. Luo, L.; Apps, D.; Arcand, S.; Xu, H.; Pan, M.; Hoerling, M. Contribution of temperature and precipitation anomalies to the California drought during 2012–2015. Geophys. Res. Lett. 2017, 44, 3184–3192. [Google Scholar] [CrossRef]

Publication Details

Published in : Volume 7 | Issue 2 | March-April 2024
Date of Publication : 2024-04-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 326-332
Manuscript Number : SHISRRJ247260
Publisher : Shauryam Research Institute

ISSN : 2581-6306

Cite This Article :

K. Madhu Sudhan Reddy, S. Himani, "Systematic Drought Examination through Time Series Model Implementation", Shodhshauryam, International Scientific Refereed Research Journal (SHISRRJ), ISSN : 2581-6306, Volume 7, Issue 2, pp.326-332, March-April.2024
URL : https://shisrrj.com/SHISRRJ247260

Article Preview